21using Args = kernels::InvariantsEvaluator2D::Buffers;
 
   23static MFEM_HOST_DEVICE 
inline 
   27   kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).dI1(dI1));
 
   31static MFEM_HOST_DEVICE 
inline 
   35   kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).dI1b(dI1b).dI2b(dI2b));
 
   39static MFEM_HOST_DEVICE 
inline 
   42   real_t dI1[4], dI2[4], dI2b[4];
 
   43   kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).dI1(dI1)
 
   44                                     .dI2(dI2).dI2b(dI2b));
 
   45   const real_t I2 = ie.Get_I2();
 
   47                -ie.Get_I1() / (I2*I2), ie.Get_dI2(), P);
 
   51static MFEM_HOST_DEVICE 
inline 
   55   kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).dI2b(dI2b));
 
   56   const real_t I2b = ie.Get_I2b();
 
   57   kernels::Set(2,2, 0.5 * (1.0 - 1.0 / (I2b * I2b)), ie.Get_dI2b(), P);
 
   60static MFEM_HOST_DEVICE 
inline 
   64   kernels::InvariantsEvaluator2D ie(
Args().
 
   67   const real_t I2 = ie.Get_I2();
 
   68   kernels::Set(2,2, 0.5 * (1.0 - 1.0 / (I2 * I2)), ie.Get_dI2(), P);
 
   72static MFEM_HOST_DEVICE 
inline 
   75   real_t dI1b[4], dI2[4], dI2b[4];
 
   76   kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).
 
   77                                     dI1b(dI1b).dI2(dI2).dI2b(dI2b));
 
   81   const real_t I2 = ie.Get_I2();
 
   82   kernels::Add(2,2, w[1] * 0.5 * (1.0 - 1.0 / (I2 * I2)), ie.Get_dI2(), P);
 
   86static MFEM_HOST_DEVICE 
inline 
   90   kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).
 
   91                                     dI1b(dI1b).dI2b(dI2b));
 
   95   const real_t I2b = ie.Get_I2b();
 
   96   kernels::Add(2,2, w[1] * 0.5 * (1.0 - 1.0 / (I2b * I2b)), ie.Get_dI2b(), P);
 
  100                           const real_t metric_normal,
 
  114   MFEM_VERIFY(mid == 1 || mid == 2 || mid == 7 || mid == 77
 
  115               || mid == 80 || mid == 94,
 
  116               "2D metric not yet implemented!");
 
  118   const bool const_m0 = mc_.
Size() == 1;
 
  120   constexpr int DIM = 2;
 
  121   constexpr int NBZ = 1;
 
  123   const int D1D = T_D1D ? T_D1D : d1d;
 
  124   const int Q1D = T_Q1D ? T_Q1D : q1d;
 
  126   const auto MC = const_m0 ?
 
  136   const real_t *metric_data = metric_param.
Read();
 
  140      constexpr int NBZ = 1;
 
  141      constexpr int MQ1 = T_Q1D ? T_Q1D : T_MAX;
 
  142      constexpr int MD1 = T_D1D ? T_D1D : T_MAX;
 
  143      const int D1D = T_D1D ? T_D1D : d1d;
 
  144      const int Q1D = T_Q1D ? T_Q1D : q1d;
 
  146      MFEM_SHARED 
real_t BG[2][MQ1*MD1];
 
  147      MFEM_SHARED 
real_t XY[2][NBZ][MD1*MD1];
 
  148      MFEM_SHARED 
real_t DQ[4][NBZ][MD1*MQ1];
 
  149      MFEM_SHARED 
real_t QQ[4][NBZ][MQ1*MQ1];
 
  151      kernels::internal::LoadX<MD1,NBZ>(e,D1D,X,XY);
 
  152      kernels::internal::LoadBG<MD1,MQ1>(D1D,Q1D,
b,g,BG);
 
  154      kernels::internal::GradX<MD1,MQ1,NBZ>(D1D,Q1D,BG,XY,DQ);
 
  155      kernels::internal::GradY<MD1,MQ1,NBZ>(D1D,Q1D,BG,DQ,QQ);
 
  157      MFEM_FOREACH_THREAD(qy,y,Q1D)
 
  159         MFEM_FOREACH_THREAD(qx,x,Q1D)
 
  161            const real_t *Jtr = &J(0,0,qx,qy,e);
 
  163            const real_t m_coef = const_m0 ? MC(0,0,0) : MC(qx,qy,e);
 
  164            const real_t weight = metric_normal * m_coef *
 
  173            kernels::internal::PullGrad<MQ1,NBZ>(Q1D,qx,qy,QQ,Jpr);
 
  181            if (mid ==  1) { EvalP_001(Jpt, P); }
 
  182            if (mid ==  2) { EvalP_002(Jpt, P); }
 
  183            if (mid ==  7) { EvalP_007(Jpt, P); }
 
  184            if (mid == 56) { EvalP_056(Jpt, P); }
 
  185            if (mid == 77) { EvalP_077(Jpt, P); }
 
  186            if (mid == 80) { EvalP_080(Jpt, metric_data, P); }
 
  187            if (mid == 94) { EvalP_094(Jpt, metric_data, P); }
 
  188            for (
int i = 0; i < 4; i++) { P[i] *= weight; }
 
  193            kernels::internal::PushGrad<MQ1,NBZ>(Q1D,qx,qy,A,QQ);
 
  197      kernels::internal::LoadBGt<MD1,MQ1>(D1D,Q1D,
b,g,BG);
 
  198      kernels::internal::GradYt<MD1,MQ1,NBZ>(D1D,Q1D,BG,QQ,DQ);
 
  199      kernels::internal::GradXt<MD1,MQ1,NBZ>(D1D,Q1D,BG,DQ,Y,e);
 
 
  207   const int D1D = 
PA.maps->ndof;
 
  208   const int Q1D = 
PA.maps->nqpt;
 
  209   const int id = (D1D << 4 ) | Q1D;
 
  223   MFEM_LAUNCH_TMOP_KERNEL(AddMultPA_Kernel_2D,
id,mn,
MC,mp,M,N,J,W,B,G,X,Y);
 
 
const T * Read(bool on_dev=true) const
Shortcut for mfem::Read(a.GetMemory(), a.Size(), on_dev).
Rank 3 tensor (array of matrices)
const real_t * Read(bool on_dev=true) const
Shortcut for mfem::Read( GetMemory(), TotalSize(), on_dev).
TMOP_QualityMetric * metric
void AddMultPA_2D(const Vector &, Vector &) const
struct mfem::TMOP_Integrator::@26 PA
virtual int Id() const
Return the metric ID.
virtual const real_t * Read(bool on_dev=true) const
Shortcut for mfem::Read(vec.GetMemory(), vec.Size(), on_dev).
virtual real_t * ReadWrite(bool on_dev=true)
Shortcut for mfem::ReadWrite(vec.GetMemory(), vec.Size(), on_dev).
int Size() const
Returns the size of the vector.
MFEM_HOST_DEVICE void CalcInverse(const T *data, T *inv_data)
Return the inverse of a matrix with given size and data into the matrix with data inv_data.
MFEM_HOST_DEVICE void Add(const int height, const int width, const TALPHA alpha, const TA *Adata, const TB *Bdata, TC *Cdata)
Compute C = A + alpha*B, where the matrices A, B and C are of size height x width with data Adata,...
MFEM_HOST_DEVICE void Mult(const int height, const int width, const TA *data, const TX *x, TY *y)
Matrix vector multiplication: y = A x, where the matrix A is of size height x width with given data,...
MFEM_HOST_DEVICE void MultABt(const int Aheight, const int Awidth, const int Bheight, const TA *Adata, const TB *Bdata, TC *ABtdata)
Multiply a matrix of size Aheight x Awidth and data Adata with the transpose of a matrix of size Bhei...
MFEM_HOST_DEVICE void Set(const int height, const int width, const real_t alpha, const TA *Adata, TB *Bdata)
Compute B = alpha*A, where the matrices A and B are of size height x width with data Adata and Bdata.
MFEM_HOST_DEVICE T Det(const T *data)
Compute the determinant of a square matrix of size dim with given data.
MFEM_REGISTER_TMOP_KERNELS(void, DatcSize, const int NE, const int ncomp, const int sizeidx, const real_t input_min_size, const DenseMatrix &w_, const Array< real_t > &b_, const Vector &x_, const Vector &nc_reduce, DenseTensor &j_, const int d1d, const int q1d)
MFEM_HOST_DEVICE DeviceTensor< sizeof...(Dims), T > Reshape(T *ptr, Dims... dims)
Wrap a pointer as a DeviceTensor with automatically deduced template parameters.
void forall_2D_batch(int N, int X, int Y, int BZ, lambda &&body)
kernels::InvariantsEvaluator2D::Buffers Args