MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
kernels.hpp
Go to the documentation of this file.
1// Copyright (c) 2010-2024, Lawrence Livermore National Security, LLC. Produced
2// at the Lawrence Livermore National Laboratory. All Rights reserved. See files
3// LICENSE and NOTICE for details. LLNL-CODE-806117.
4//
5// This file is part of the MFEM library. For more information and source code
6// availability visit https://mfem.org.
7//
8// MFEM is free software; you can redistribute it and/or modify it under the
9// terms of the BSD-3 license. We welcome feedback and contributions, see file
10// CONTRIBUTING.md for details.
11
12#ifndef MFEM_LINALG_KERNELS_HPP
13#define MFEM_LINALG_KERNELS_HPP
14
15#include "../config/config.hpp"
18
19#include "matrix.hpp"
20#include "tmatrix.hpp"
21#include "tlayout.hpp"
22#include "ttensor.hpp"
23
24// This header contains stand-alone functions for "small" dense linear algebra
25// (at quadrature point or element-level) designed to be inlined directly into
26// device kernels.
27
28// Many methods of the DenseMatrix class and some of the Vector class call these
29// kernels directly on the host, see the implementations in linalg/densemat.cpp
30// and linalg/vector.cpp.
31
32namespace mfem
33{
34
35namespace kernels
36{
37
38/// Compute the square of the Euclidean distance to another vector
39template<int dim>
40MFEM_HOST_DEVICE inline real_t DistanceSquared(const real_t *x, const real_t *y)
41{
42 real_t d = 0.0;
43 for (int i = 0; i < dim; i++) { d += (x[i]-y[i])*(x[i]-y[i]); }
44 return d;
45}
46
47/// Creates n x n diagonal matrix with diagonal elements c
48template<int dim>
49MFEM_HOST_DEVICE inline void Diag(const real_t c, real_t *data)
50{
51 const int N = dim*dim;
52 for (int i = 0; i < N; i++) { data[i] = 0.0; }
53 for (int i = 0; i < dim; i++) { data[i*(dim+1)] = c; }
54}
55
56/// Vector subtraction operation: z = a * (x - y)
57template<int dim>
58MFEM_HOST_DEVICE inline void Subtract(const real_t a,
59 const real_t *x, const real_t *y,
60 real_t *z)
61{
62 for (int i = 0; i < dim; i++) { z[i] = a * (x[i] - y[i]); }
63}
64
65/// Dense matrix operation: VWt += v w^t
66template<int dim>
67MFEM_HOST_DEVICE inline void AddMultVWt(const real_t *v, const real_t *w,
68 real_t *VWt)
69{
70 for (int i = 0; i < dim; i++)
71 {
72 const real_t vi = v[i];
73 for (int j = 0; j < dim; j++) { VWt[i*dim+j] += vi * w[j]; }
74 }
75}
76
77template<int H, int W, typename T>
78MFEM_HOST_DEVICE inline
79void FNorm(real_t &scale_factor, real_t &scaled_fnorm2, const T *data)
80{
81 int i, hw = H * W;
82 T max_norm = 0.0, entry, fnorm2;
83
84 for (i = 0; i < hw; i++)
85 {
86 entry = fabs(data[i]);
87 if (entry > max_norm)
88 {
89 max_norm = entry;
90 }
91 }
92
93 if (max_norm == 0.0)
94 {
95 scale_factor = scaled_fnorm2 = 0.0;
96 return;
97 }
98
99 fnorm2 = 0.0;
100 for (i = 0; i < hw; i++)
101 {
102 entry = data[i] / max_norm;
103 fnorm2 += entry * entry;
104 }
105
106 scale_factor = max_norm;
107 scaled_fnorm2 = fnorm2;
108}
109
110/// Compute the Frobenius norm of the matrix
111template<int H, int W, typename T>
112MFEM_HOST_DEVICE inline
113real_t FNorm(const T *data)
114{
115 real_t s, n2;
116 kernels::FNorm<H,W>(s, n2, data);
117 return s*sqrt(n2);
118}
119
120/// Compute the square of the Frobenius norm of the matrix
121template<int H, int W, typename T>
122MFEM_HOST_DEVICE inline
123real_t FNorm2(const T *data)
124{
125 real_t s, n2;
126 kernels::FNorm<H,W>(s, n2, data);
127 return s*s*n2;
128}
129
130/// Returns the l2 norm of the Vector with given @a size and @a data.
131template<typename T>
132MFEM_HOST_DEVICE inline
133real_t Norml2(const int size, const T *data)
134{
135 if (0 == size) { return 0.0; }
136 if (1 == size) { return std::abs(data[0]); }
137 T scale = 0.0;
138 T sum = 0.0;
139 for (int i = 0; i < size; i++)
140 {
141 if (data[i] != 0.0)
142 {
143 const T absdata = fabs(data[i]);
144 if (scale <= absdata)
145 {
146 const T sqr_arg = scale / absdata;
147 sum = 1.0 + sum * (sqr_arg * sqr_arg);
148 scale = absdata;
149 continue;
150 } // end if scale <= absdata
151 const T sqr_arg = absdata / scale;
152 sum += (sqr_arg * sqr_arg); // else scale > absdata
153 } // end if data[i] != 0
154 }
155 return scale * sqrt(sum);
156}
157
158/** @brief Matrix vector multiplication: y = A x, where the matrix A is of size
159 @a height x @a width with given @a data, while @a x and @a y specify the
160 data of the input and output vectors. */
161template<typename TA, typename TX, typename TY>
162MFEM_HOST_DEVICE inline
163void Mult(const int height, const int width, const TA *data, const TX *x, TY *y)
164{
165 if (width == 0)
166 {
167 for (int row = 0; row < height; row++)
168 {
169 y[row] = 0.0;
170 }
171 return;
172 }
173 const TA *d_col = data;
174 TX x_col = x[0];
175 for (int row = 0; row < height; row++)
176 {
177 y[row] = x_col*d_col[row];
178 }
179 d_col += height;
180 for (int col = 1; col < width; col++)
181 {
182 x_col = x[col];
183 for (int row = 0; row < height; row++)
184 {
185 y[row] += x_col*d_col[row];
186 }
187 d_col += height;
188 }
189}
190
191/** @brief Matrix transpose vector multiplication: y = At x, where the matrix A
192 is of size @a height x @a width with given @a data, while @a x and @a y
193 specify the data of the input and output vectors. */
194template<typename TA, typename TX, typename TY>
195MFEM_HOST_DEVICE inline
196void MultTranspose(const int height, const int width, const TA *data,
197 const TX *x, TY *y)
198{
199 if (height == 0)
200 {
201 for (int row = 0; row < width; row++)
202 {
203 y[row] = 0.0;
204 }
205 return;
206 }
207 TY *y_off = y;
208 for (int i = 0; i < width; ++i)
209 {
210 TY val = 0.0;
211 for (int j = 0; j < height; ++j)
212 {
213 val += x[j] * data[i * height + j];
214 }
215 *y_off = val;
216 y_off++;
217 }
218}
219
220/// Symmetrize a square matrix with given @a size and @a data: A -> (A+A^T)/2.
221template<typename T>
222MFEM_HOST_DEVICE inline
223void Symmetrize(const int size, T *data)
224{
225 for (int i = 0; i < size; i++)
226 {
227 for (int j = 0; j < i; j++)
228 {
229 const T a = 0.5 * (data[i*size+j] + data[j*size+i]);
230 data[j*size+i] = data[i*size+j] = a;
231 }
232 }
233}
234
235/// Compute the determinant of a square matrix of size dim with given @a data.
236template<int dim, typename T>
237MFEM_HOST_DEVICE inline T Det(const T *data)
238{
240}
241
242/** @brief Return the inverse of a matrix with given @a size and @a data into
243 the matrix with data @a inv_data. */
244template<int dim, typename T>
245MFEM_HOST_DEVICE inline
246void CalcInverse(const T *data, T *inv_data)
247{
248 typedef ColumnMajorLayout2D<dim,dim> layout_t;
249 const T det = TAdjDetHD<T>(layout_t(), data, layout_t(), inv_data);
250 TAssignHD<AssignOp::Mult>(layout_t(), inv_data, static_cast<T>(1.0)/det);
251}
252
253/** @brief Return the adjugate of a matrix */
254template<int dim, typename T>
255MFEM_HOST_DEVICE inline
256void CalcAdjugate(const T *data, T *adj_data)
257{
258 typedef ColumnMajorLayout2D<dim,dim> layout_t;
259 TAdjugateHD<T>(layout_t(), data, layout_t(), adj_data);
260}
261
262/** @brief Compute C = A + alpha*B, where the matrices A, B and C are of size @a
263 height x @a width with data @a Adata, @a Bdata and @a Cdata. */
264template<typename TALPHA, typename TA, typename TB, typename TC>
265MFEM_HOST_DEVICE inline
266void Add(const int height, const int width, const TALPHA alpha,
267 const TA *Adata, const TB *Bdata, TC *Cdata)
268{
269 for (int j = 0; j < width; j++)
270 {
271 for (int i = 0; i < height; i++)
272 {
273 const int n = i*width+j;
274 Cdata[n] = Adata[n] + alpha * Bdata[n];
275 }
276 }
277}
278
279/** @brief Compute C = alpha*A + beta*B, where the matrices A, B and C are of
280 size @a height x @a width with data @a Adata, @a Bdata and @a Cdata. */
281template<typename TALPHA, typename TBETA, typename TA, typename TB, typename TC>
282MFEM_HOST_DEVICE inline
283void Add(const int height, const int width,
284 const TALPHA alpha, const TA *Adata,
285 const TBETA beta, const TB *Bdata,
286 TC *Cdata)
287{
288 const int m = height * width;
289 for (int i = 0; i < m; i++)
290 {
291 Cdata[i] = alpha * Adata[i] + beta * Bdata[i];
292 }
293}
294
295/** @brief Compute B += A, where the matrices A and B are of size
296 @a height x @a width with data @a Adata and @a Bdata. */
297template<typename TA, typename TB>
298MFEM_HOST_DEVICE inline
299void Add(const int height, const int width, const TA *Adata, TB *Bdata)
300{
301 const int m = height * width;
302 for (int i = 0; i < m; i++)
303 {
304 Bdata[i] += Adata[i];
305 }
306}
307
308/** @brief Compute B +=alpha*A, where the matrices A and B are of size
309 @a height x @a width with data @a Adata and @a Bdata. */
310template<typename TA, typename TB>
311MFEM_HOST_DEVICE inline
312void Add(const int height, const int width,
313 const real_t alpha, const TA *Adata, TB *Bdata)
314{
315 const int m = height * width;
316 for (int i = 0; i < m; i++)
317 {
318 Bdata[i] += alpha * Adata[i];
319 }
320}
321
322/** @brief Compute B = alpha*A, where the matrices A and B are of size
323 @a height x @a width with data @a Adata and @a Bdata. */
324template<typename TA, typename TB>
325MFEM_HOST_DEVICE inline
326void Set(const int height, const int width,
327 const real_t alpha, const TA *Adata, TB *Bdata)
328{
329 const int m = height * width;
330 for (int i = 0; i < m; i++)
331 {
332 Bdata[i] = alpha * Adata[i];
333 }
334}
335
336/** @brief Matrix-matrix multiplication: A = B * C, where the matrices A, B and
337 C are of sizes @a Aheight x @a Awidth, @a Aheight x @a Bwidth and @a Bwidth
338 x @a Awidth, respectively. */
339template<typename TA, typename TB, typename TC>
340MFEM_HOST_DEVICE inline
341void Mult(const int Aheight, const int Awidth, const int Bwidth,
342 const TB *Bdata, const TC *Cdata, TA *Adata)
343{
344 const int ah_x_aw = Aheight * Awidth;
345 for (int i = 0; i < ah_x_aw; i++) { Adata[i] = 0.0; }
346 for (int j = 0; j < Awidth; j++)
347 {
348 for (int k = 0; k < Bwidth; k++)
349 {
350 for (int i = 0; i < Aheight; i++)
351 {
352 Adata[i+j*Aheight] += Bdata[i+k*Aheight] * Cdata[k+j*Bwidth];
353 }
354 }
355 }
356}
357
358/** @brief Multiply a matrix of size @a Aheight x @a Awidth and data @a Adata
359 with the transpose of a matrix of size @a Bheight x @a Awidth and data @a
360 Bdata: A * Bt. Return the result in a matrix with data @a ABtdata. */
361template<typename TA, typename TB, typename TC>
362MFEM_HOST_DEVICE inline
363void MultABt(const int Aheight, const int Awidth, const int Bheight,
364 const TA *Adata, const TB *Bdata, TC *ABtdata)
365{
366 const int ah_x_bh = Aheight * Bheight;
367 for (int i = 0; i < ah_x_bh; i++) { ABtdata[i] = 0.0; }
368 for (int k = 0; k < Awidth; k++)
369 {
370 TC *c = ABtdata;
371 for (int j = 0; j < Bheight; j++)
372 {
373 const real_t bjk = Bdata[j];
374 for (int i = 0; i < Aheight; i++)
375 {
376 c[i] += Adata[i] * bjk;
377 }
378 c += Aheight;
379 }
380 Adata += Aheight;
381 Bdata += Bheight;
382 }
383}
384
385/** @brief Multiply the transpose of a matrix of size @a Aheight x @a Awidth
386 and data @a Adata with a matrix of size @a Aheight x @a Bwidth and data @a
387 Bdata: At * B. Return the result in a matrix with data @a AtBdata. */
388template<typename TA, typename TB, typename TC>
389MFEM_HOST_DEVICE inline
390void MultAtB(const int Aheight, const int Awidth, const int Bwidth,
391 const TA *Adata, const TB *Bdata, TC *AtBdata)
392{
393 TC *c = AtBdata;
394 for (int i = 0; i < Bwidth; ++i)
395 {
396 for (int j = 0; j < Awidth; ++j)
397 {
398 TC val = 0.0;
399 for (int k = 0; k < Aheight; ++k)
400 {
401 val += Adata[j * Aheight + k] * Bdata[i * Aheight + k];
402 }
403 *c = val;
404 c++;
405 }
406 }
407}
408
409/// Given a matrix of size 2x1, 3x1, or 3x2, compute the left inverse.
410template<int HEIGHT, int WIDTH> MFEM_HOST_DEVICE
411void CalcLeftInverse(const real_t *data, real_t *left_inv);
412
413/// Compute the spectrum of the matrix of size dim with given @a data, returning
414/// the eigenvalues in the array @a lambda and the eigenvectors in the array @a
415/// vec (listed consecutively).
416template<int dim> MFEM_HOST_DEVICE
417void CalcEigenvalues(const real_t *data, real_t *lambda, real_t *vec);
418
419/// Return the i'th singular value of the matrix of size dim with given @a data.
420template<int dim> MFEM_HOST_DEVICE
421real_t CalcSingularvalue(const real_t *data, const int i);
422
423
424// Utility functions for CalcEigenvalues and CalcSingularvalue
425namespace internal
426{
427
428/// Utility function to swap the values of @a a and @a b.
429template<typename T>
430MFEM_HOST_DEVICE static inline
431void Swap(T &a, T &b)
432{
433 T tmp = a;
434 a = b;
435 b = tmp;
436}
437
438const real_t Epsilon = std::numeric_limits<real_t>::epsilon();
439
440/// Utility function used in CalcSingularvalue<3>.
441MFEM_HOST_DEVICE static inline
442void Eigenvalues2S(const real_t &d12, real_t &d1, real_t &d2)
443{
444 const real_t sqrt_1_eps = sqrt(1./Epsilon);
445 if (d12 != 0.)
446 {
447 // "The Symmetric Eigenvalue Problem", B. N. Parlett, pp.189-190
448 real_t t;
449 const real_t zeta = (d2 - d1)/(2*d12); // inf/inf from overflows?
450 if (fabs(zeta) < sqrt_1_eps)
451 {
452 t = d12*copysign(1./(fabs(zeta) + sqrt(1. + zeta*zeta)), zeta);
453 }
454 else
455 {
456 t = d12*copysign(0.5/fabs(zeta), zeta);
457 }
458 d1 -= t;
459 d2 += t;
460 }
461}
462
463/// Utility function used in CalcEigenvalues().
464MFEM_HOST_DEVICE static inline
465void Eigensystem2S(const real_t &d12, real_t &d1, real_t &d2,
466 real_t &c, real_t &s)
467{
468 const real_t sqrt_1_eps = sqrt(1./Epsilon);
469 if (d12 == 0.0)
470 {
471 c = 1.;
472 s = 0.;
473 }
474 else
475 {
476 // "The Symmetric Eigenvalue Problem", B. N. Parlett, pp.189-190
477 real_t t;
478 const real_t zeta = (d2 - d1)/(2*d12);
479 const real_t azeta = fabs(zeta);
480 if (azeta < sqrt_1_eps)
481 {
482 t = copysign(1./(azeta + sqrt(1. + zeta*zeta)), zeta);
483 }
484 else
485 {
486 t = copysign(0.5/azeta, zeta);
487 }
488 c = sqrt(1./(1. + t*t));
489 s = c*t;
490 t *= d12;
491 d1 -= t;
492 d2 += t;
493 }
494}
495
496
497/// Utility function used in CalcEigenvalues<3>.
498MFEM_HOST_DEVICE static inline
499void GetScalingFactor(const real_t &d_max, real_t &mult)
500{
501 int d_exp;
502 if (d_max > 0.)
503 {
504 mult = frexp(d_max, &d_exp);
505 if (d_exp == std::numeric_limits<real_t>::max_exponent)
506 {
507 mult *= std::numeric_limits<real_t>::radix;
508 }
509 mult = d_max/mult;
510 }
511 else
512 {
513 mult = 1.;
514 }
515 // mult = 2^d_exp is such that d_max/mult is in [0.5,1) or in other words
516 // d_max is in the interval [0.5,1)*mult
517}
518
519/// Utility function used in CalcEigenvalues<3>.
520MFEM_HOST_DEVICE static inline
521bool KernelVector2G(const int &mode,
522 real_t &d1, real_t &d12, real_t &d21, real_t &d2)
523{
524 // Find a vector (z1,z2) in the "near"-kernel of the matrix
525 // | d1 d12 |
526 // | d21 d2 |
527 // using QR factorization.
528 // The vector (z1,z2) is returned in (d1,d2). Return 'true' if the matrix
529 // is zero without setting (d1,d2).
530 // Note: in the current implementation |z1| + |z2| = 1.
531
532 // l1-norms of the columns
533 real_t n1 = fabs(d1) + fabs(d21);
534 real_t n2 = fabs(d2) + fabs(d12);
535
536 bool swap_columns = (n2 > n1);
537 real_t mu;
538
539 if (!swap_columns)
540 {
541 if (n1 == 0.)
542 {
543 return true;
544 }
545
546 if (mode == 0) // eliminate the larger entry in the column
547 {
548 if (fabs(d1) > fabs(d21))
549 {
550 Swap(d1, d21);
551 Swap(d12, d2);
552 }
553 }
554 else // eliminate the smaller entry in the column
555 {
556 if (fabs(d1) < fabs(d21))
557 {
558 Swap(d1, d21);
559 Swap(d12, d2);
560 }
561 }
562 }
563 else
564 {
565 // n2 > n1, swap columns 1 and 2
566 if (mode == 0) // eliminate the larger entry in the column
567 {
568 if (fabs(d12) > fabs(d2))
569 {
570 Swap(d1, d2);
571 Swap(d12, d21);
572 }
573 else
574 {
575 Swap(d1, d12);
576 Swap(d21, d2);
577 }
578 }
579 else // eliminate the smaller entry in the column
580 {
581 if (fabs(d12) < fabs(d2))
582 {
583 Swap(d1, d2);
584 Swap(d12, d21);
585 }
586 else
587 {
588 Swap(d1, d12);
589 Swap(d21, d2);
590 }
591 }
592 }
593
594 n1 = hypot(d1, d21);
595
596 if (d21 != 0.)
597 {
598 // v = (n1, n2)^t, |v| = 1
599 // Q = I - 2 v v^t, Q (d1, d21)^t = (mu, 0)^t
600 mu = copysign(n1, d1);
601 n1 = -d21*(d21/(d1 + mu)); // = d1 - mu
602 d1 = mu;
603 // normalize (n1,d21) to avoid overflow/underflow
604 // normalize (n1,d21) by the max-norm to avoid the sqrt call
605 if (fabs(n1) <= fabs(d21))
606 {
607 // (n1,n2) <-- (n1/d21,1)
608 n1 = n1/d21;
609 mu = (2./(1. + n1*n1))*(n1*d12 + d2);
610 d2 = d2 - mu;
611 d12 = d12 - mu*n1;
612 }
613 else
614 {
615 // (n1,n2) <-- (1,d21/n1)
616 n2 = d21/n1;
617 mu = (2./(1. + n2*n2))*(d12 + n2*d2);
618 d2 = d2 - mu*n2;
619 d12 = d12 - mu;
620 }
621 }
622
623 // Solve:
624 // | d1 d12 | | z1 | = | 0 |
625 // | 0 d2 | | z2 | | 0 |
626
627 // choose (z1,z2) to minimize |d1*z1 + d12*z2| + |d2*z2|
628 // under the condition |z1| + |z2| = 1, z2 >= 0 (for uniqueness)
629 // set t = z1, z2 = 1 - |t|, -1 <= t <= 1
630 // objective function is:
631 // |d1*t + d12*(1 - |t|)| + |d2|*(1 - |t|) -- piecewise linear with
632 // possible minima are -1,0,1,t1 where t1: d1*t1 + d12*(1 - |t1|) = 0
633 // values: @t=+/-1 -> |d1|, @t=0 -> |n1| + |d2|, @t=t1 -> |d2|*(1 - |t1|)
634
635 // evaluate z2 @t=t1
636 mu = -d12/d1;
637 // note: |mu| <= 1, if using l2-norm for column pivoting
638 // |mu| <= sqrt(2), if using l1-norm
639 n2 = 1./(1. + fabs(mu));
640 // check if |d1|<=|d2|*z2
641 if (fabs(d1) <= n2*fabs(d2))
642 {
643 d2 = 0.;
644 d1 = 1.;
645 }
646 else
647 {
648 d2 = n2;
649 // d1 = (n2 < 0.5) ? copysign(1. - n2, mu) : mu*n2;
650 d1 = mu*n2;
651 }
652
653 if (swap_columns)
654 {
655 Swap(d1, d2);
656 }
657
658 return false;
659}
660
661/// Utility function used in CalcEigenvalues<3>.
662MFEM_HOST_DEVICE static inline
663void Vec_normalize3_aux(const real_t &x1, const real_t &x2,
664 const real_t &x3,
665 real_t &n1, real_t &n2, real_t &n3)
666{
667 real_t t, r;
668
669 const real_t m = fabs(x1);
670 r = x2/m;
671 t = 1. + r*r;
672 r = x3/m;
673 t = sqrt(1./(t + r*r));
674 n1 = copysign(t, x1);
675 t /= m;
676 n2 = x2*t;
677 n3 = x3*t;
678}
679
680/// Utility function used in CalcEigenvalues<3>.
681MFEM_HOST_DEVICE static inline
682void Vec_normalize3(const real_t &x1, const real_t &x2, const real_t &x3,
683 real_t &n1, real_t &n2, real_t &n3)
684{
685 // should work ok when xk is the same as nk for some or all k
686 if (fabs(x1) >= fabs(x2))
687 {
688 if (fabs(x1) >= fabs(x3))
689 {
690 if (x1 != 0.)
691 {
692 Vec_normalize3_aux(x1, x2, x3, n1, n2, n3);
693 }
694 else
695 {
696 n1 = n2 = n3 = 0.;
697 }
698 return;
699 }
700 }
701 else if (fabs(x2) >= fabs(x3))
702 {
703 Vec_normalize3_aux(x2, x1, x3, n2, n1, n3);
704 return;
705 }
706 Vec_normalize3_aux(x3, x1, x2, n3, n1, n2);
707}
708
709/// Utility function used in CalcEigenvalues<3>.
710MFEM_HOST_DEVICE static inline
711int KernelVector3G_aux(const int &mode,
712 real_t &d1, real_t &d2, real_t &d3,
713 real_t &c12, real_t &c13, real_t &c23,
714 real_t &c21, real_t &c31, real_t &c32)
715{
716 int kdim;
717 real_t mu, n1, n2, n3, s1, s2, s3;
718
719 s1 = hypot(c21, c31);
720 n1 = hypot(d1, s1);
721
722 if (s1 != 0.)
723 {
724 // v = (s1, s2, s3)^t, |v| = 1
725 // Q = I - 2 v v^t, Q (d1, c12, c13)^t = (mu, 0, 0)^t
726 mu = copysign(n1, d1);
727 n1 = -s1*(s1/(d1 + mu)); // = d1 - mu
728 d1 = mu;
729
730 // normalize (n1,c21,c31) to avoid overflow/underflow
731 // normalize (n1,c21,c31) by the max-norm to avoid the sqrt call
732 if (fabs(n1) >= fabs(c21))
733 {
734 if (fabs(n1) >= fabs(c31))
735 {
736 // n1 is max, (s1,s2,s3) <-- (1,c21/n1,c31/n1)
737 s2 = c21/n1;
738 s3 = c31/n1;
739 mu = 2./(1. + s2*s2 + s3*s3);
740 n2 = mu*(c12 + s2*d2 + s3*c32);
741 n3 = mu*(c13 + s2*c23 + s3*d3);
742 c12 = c12 - n2;
743 d2 = d2 - s2*n2;
744 c32 = c32 - s3*n2;
745 c13 = c13 - n3;
746 c23 = c23 - s2*n3;
747 d3 = d3 - s3*n3;
748 goto done_column_1;
749 }
750 }
751 else if (fabs(c21) >= fabs(c31))
752 {
753 // c21 is max, (s1,s2,s3) <-- (n1/c21,1,c31/c21)
754 s1 = n1/c21;
755 s3 = c31/c21;
756 mu = 2./(1. + s1*s1 + s3*s3);
757 n2 = mu*(s1*c12 + d2 + s3*c32);
758 n3 = mu*(s1*c13 + c23 + s3*d3);
759 c12 = c12 - s1*n2;
760 d2 = d2 - n2;
761 c32 = c32 - s3*n2;
762 c13 = c13 - s1*n3;
763 c23 = c23 - n3;
764 d3 = d3 - s3*n3;
765 goto done_column_1;
766 }
767 // c31 is max, (s1,s2,s3) <-- (n1/c31,c21/c31,1)
768 s1 = n1/c31;
769 s2 = c21/c31;
770 mu = 2./(1. + s1*s1 + s2*s2);
771 n2 = mu*(s1*c12 + s2*d2 + c32);
772 n3 = mu*(s1*c13 + s2*c23 + d3);
773 c12 = c12 - s1*n2;
774 d2 = d2 - s2*n2;
775 c32 = c32 - n2;
776 c13 = c13 - s1*n3;
777 c23 = c23 - s2*n3;
778 d3 = d3 - n3;
779 }
780
781done_column_1:
782
783 // Solve:
784 // | d2 c23 | | z2 | = | 0 |
785 // | c32 d3 | | z3 | | 0 |
786 if (KernelVector2G(mode, d2, c23, c32, d3))
787 {
788 // Have two solutions:
789 // two vectors in the kernel are P (-c12/d1, 1, 0)^t and
790 // P (-c13/d1, 0, 1)^t where P is the permutation matrix swapping
791 // entries 1 and col.
792
793 // A vector orthogonal to both these vectors is P (1, c12/d1, c13/d1)^t
794 d2 = c12/d1;
795 d3 = c13/d1;
796 d1 = 1.;
797 kdim = 2;
798 }
799 else
800 {
801 // solve for z1:
802 // note: |z1| <= a since |z2| + |z3| = 1, and
803 // max{|c12|,|c13|} <= max{norm(col. 2),norm(col. 3)}
804 // <= norm(col. 1) <= a |d1|
805 // a = 1, if using l2-norm for column pivoting
806 // a = sqrt(3), if using l1-norm
807 d1 = -(c12*d2 + c13*d3)/d1;
808 kdim = 1;
809 }
810
811 Vec_normalize3(d1, d2, d3, d1, d2, d3);
812
813 return kdim;
814}
815
816/// Utility function used in CalcEigenvalues<3>.
817MFEM_HOST_DEVICE static inline
818int KernelVector3S(const int &mode, const real_t &d12,
819 const real_t &d13, const real_t &d23,
820 real_t &d1, real_t &d2, real_t &d3)
821{
822 // Find a unit vector (z1,z2,z3) in the "near"-kernel of the matrix
823 // | d1 d12 d13 |
824 // | d12 d2 d23 |
825 // | d13 d23 d3 |
826 // using QR factorization.
827 // The vector (z1,z2,z3) is returned in (d1,d2,d3).
828 // Returns the dimension of the kernel, kdim, but never zero.
829 // - if kdim == 3, then (d1,d2,d3) is not defined,
830 // - if kdim == 2, then (d1,d2,d3) is a vector orthogonal to the kernel,
831 // - otherwise kdim == 1 and (d1,d2,d3) is a vector in the "near"-kernel.
832
833 real_t c12 = d12, c13 = d13, c23 = d23;
834 real_t c21, c31, c32;
835 int col, row;
836
837 // l1-norms of the columns:
838 c32 = fabs(d1) + fabs(c12) + fabs(c13);
839 c31 = fabs(d2) + fabs(c12) + fabs(c23);
840 c21 = fabs(d3) + fabs(c13) + fabs(c23);
841
842 // column pivoting: choose the column with the largest norm
843 if (c32 >= c21)
844 {
845 col = (c32 >= c31) ? 1 : 2;
846 }
847 else
848 {
849 col = (c31 >= c21) ? 2 : 3;
850 }
851 switch (col)
852 {
853 case 1:
854 if (c32 == 0.) // zero matrix
855 {
856 return 3;
857 }
858 break;
859
860 case 2:
861 if (c31 == 0.) // zero matrix
862 {
863 return 3;
864 }
865 Swap(c13, c23);
866 Swap(d1, d2);
867 break;
868
869 case 3:
870 if (c21 == 0.) // zero matrix
871 {
872 return 3;
873 }
874 Swap(c12, c23);
875 Swap(d1, d3);
876 }
877
878 // row pivoting depending on 'mode'
879 if (mode == 0)
880 {
881 if (fabs(d1) <= fabs(c13))
882 {
883 row = (fabs(d1) <= fabs(c12)) ? 1 : 2;
884 }
885 else
886 {
887 row = (fabs(c12) <= fabs(c13)) ? 2 : 3;
888 }
889 }
890 else
891 {
892 if (fabs(d1) >= fabs(c13))
893 {
894 row = (fabs(d1) >= fabs(c12)) ? 1 : 2;
895 }
896 else
897 {
898 row = (fabs(c12) >= fabs(c13)) ? 2 : 3;
899 }
900 }
901 switch (row)
902 {
903 case 1:
904 c21 = c12;
905 c31 = c13;
906 c32 = c23;
907 break;
908
909 case 2:
910 c21 = d1;
911 c31 = c13;
912 c32 = c23;
913 d1 = c12;
914 c12 = d2;
915 d2 = d1;
916 c13 = c23;
917 c23 = c31;
918 break;
919
920 case 3:
921 c21 = c12;
922 c31 = d1;
923 c32 = c12;
924 d1 = c13;
925 c12 = c23;
926 c13 = d3;
927 d3 = d1;
928 }
929 row = KernelVector3G_aux(mode, d1, d2, d3, c12, c13, c23, c21, c31, c32);
930 // row is kdim
931
932 switch (col)
933 {
934 case 2:
935 Swap(d1, d2);
936 break;
937
938 case 3:
939 Swap(d1, d3);
940 }
941 return row;
942}
943
944/// Utility function used in CalcEigenvalues<3>.
945MFEM_HOST_DEVICE static inline
946int Reduce3S(const int &mode,
947 real_t &d1, real_t &d2, real_t &d3,
948 real_t &d12, real_t &d13, real_t &d23,
949 real_t &z1, real_t &z2, real_t &z3,
950 real_t &v1, real_t &v2, real_t &v3,
951 real_t &g)
952{
953 // Given the matrix
954 // | d1 d12 d13 |
955 // A = | d12 d2 d23 |
956 // | d13 d23 d3 |
957 // and a unit eigenvector z=(z1,z2,z3), transform the matrix A into the
958 // matrix B = Q P A P Q that has the form
959 // | b1 0 0 |
960 // B = Q P A P Q = | 0 b2 b23 |
961 // | 0 b23 b3 |
962 // where P is the permutation matrix switching entries 1 and k, and
963 // Q is the reflection matrix Q = I - g v v^t, defined by: set y = P z and
964 // v = c(y - e_1); if y = e_1, then v = 0 and Q = I.
965 // Note: Q y = e_1, Q e_1 = y ==> Q P A P Q e_1 = ... = lambda e_1.
966 // The entries (b1,b2,b3,b23) are returned in (d1,d2,d3,d23), and the
967 // return value of the function is k. The variable g = 2/(v1^2+v2^2+v3^3).
968
969 int k;
970 real_t s, w1, w2, w3;
971
972 if (mode == 0)
973 {
974 // choose k such that z^t e_k = zk has the smallest absolute value, i.e.
975 // the angle between z and e_k is closest to pi/2
976 if (fabs(z1) <= fabs(z3))
977 {
978 k = (fabs(z1) <= fabs(z2)) ? 1 : 2;
979 }
980 else
981 {
982 k = (fabs(z2) <= fabs(z3)) ? 2 : 3;
983 }
984 }
985 else
986 {
987 // choose k such that zk is the largest by absolute value
988 if (fabs(z1) >= fabs(z3))
989 {
990 k = (fabs(z1) >= fabs(z2)) ? 1 : 2;
991 }
992 else
993 {
994 k = (fabs(z2) >= fabs(z3)) ? 2 : 3;
995 }
996 }
997 switch (k)
998 {
999 case 2:
1000 Swap(d13, d23);
1001 Swap(d1, d2);
1002 Swap(z1, z2);
1003 break;
1004
1005 case 3:
1006 Swap(d12, d23);
1007 Swap(d1, d3);
1008 Swap(z1, z3);
1009 }
1010
1011 s = hypot(z2, z3);
1012
1013 if (s == 0.)
1014 {
1015 // s can not be zero, if zk is the smallest (mode == 0)
1016 v1 = v2 = v3 = 0.;
1017 g = 1.;
1018 }
1019 else
1020 {
1021 g = copysign(1., z1);
1022 v1 = -s*(s/(z1 + g)); // = z1 - g
1023 // normalize (v1,z2,z3) by its max-norm, avoiding the sqrt call
1024 g = fabs(v1);
1025 if (fabs(z2) > g) { g = fabs(z2); }
1026 if (fabs(z3) > g) { g = fabs(z3); }
1027 v1 = v1/g;
1028 v2 = z2/g;
1029 v3 = z3/g;
1030 g = 2./(v1*v1 + v2*v2 + v3*v3);
1031
1032 // Compute Q A Q = A - v w^t - w v^t, where
1033 // w = u - (g/2)(v^t u) v, and u = g A v
1034 // set w = g A v
1035 w1 = g*( d1*v1 + d12*v2 + d13*v3);
1036 w2 = g*(d12*v1 + d2*v2 + d23*v3);
1037 w3 = g*(d13*v1 + d23*v2 + d3*v3);
1038 // w := w - (g/2)(v^t w) v
1039 s = (g/2)*(v1*w1 + v2*w2 + v3*w3);
1040 w1 -= s*v1;
1041 w2 -= s*v2;
1042 w3 -= s*v3;
1043 // dij -= vi*wj + wi*vj
1044 d1 -= 2*v1*w1;
1045 d2 -= 2*v2*w2;
1046 d23 -= v2*w3 + v3*w2;
1047 d3 -= 2*v3*w3;
1048 // compute the off-diagonal entries on the first row/column of B which
1049 // should be zero (for debugging):
1050#if 0
1051 s = d12 - v1*w2 - v2*w1; // b12 = 0
1052 s = d13 - v1*w3 - v3*w1; // b13 = 0
1053#endif
1054 }
1055
1056 switch (k)
1057 {
1058 case 2:
1059 Swap(z1, z2);
1060 break;
1061 case 3:
1062 Swap(z1, z3);
1063 }
1064 return k;
1065}
1066
1067} // namespace kernels::internal
1068
1069// Implementations of CalcLeftInverse for dim = 1, 2.
1070
1071template<> MFEM_HOST_DEVICE inline
1072void CalcLeftInverse<2,1>(const real_t *d, real_t *left_inv)
1073{
1074 const real_t t = 1.0 / (d[0]*d[0] + d[1]*d[1]);
1075 left_inv[0] = d[0] * t;
1076 left_inv[1] = d[1] * t;
1077}
1078
1079template<> MFEM_HOST_DEVICE inline
1080void CalcLeftInverse<3,1>(const real_t *d, real_t *left_inv)
1081{
1082 const real_t t = 1.0 / (d[0]*d[0] + d[1]*d[1] + d[2]*d[2]);
1083 left_inv[0] = d[0] * t;
1084 left_inv[1] = d[1] * t;
1085 left_inv[2] = d[2] * t;
1086}
1087
1088template<> MFEM_HOST_DEVICE inline
1089void CalcLeftInverse<3,2>(const real_t *d, real_t *left_inv)
1090{
1091 real_t e = d[0]*d[0] + d[1]*d[1] + d[2]*d[2];
1092 real_t g = d[3]*d[3] + d[4]*d[4] + d[5]*d[5];
1093 real_t f = d[0]*d[3] + d[1]*d[4] + d[2]*d[5];
1094 const real_t t = 1.0 / (e*g - f*f);
1095 e *= t; g *= t; f *= t;
1096
1097 left_inv[0] = d[0]*g - d[3]*f;
1098 left_inv[1] = d[3]*e - d[0]*f;
1099 left_inv[2] = d[1]*g - d[4]*f;
1100 left_inv[3] = d[4]*e - d[1]*f;
1101 left_inv[4] = d[2]*g - d[5]*f;
1102 left_inv[5] = d[5]*e - d[2]*f;
1103}
1104
1105// Implementations of CalcEigenvalues and CalcSingularvalue for dim = 2, 3.
1106
1107/// Compute the spectrum of the matrix of size 2 with given @a data, returning
1108/// the eigenvalues in the array @a lambda and the eigenvectors in the array @a
1109/// vec (listed consecutively).
1110template<> MFEM_HOST_DEVICE inline
1111void CalcEigenvalues<2>(const real_t *data, real_t *lambda, real_t *vec)
1112{
1113 real_t d0 = data[0];
1114 real_t d2 = data[2]; // use the upper triangular entry
1115 real_t d3 = data[3];
1116 real_t c, s;
1117 internal::Eigensystem2S(d2, d0, d3, c, s);
1118 if (d0 <= d3)
1119 {
1120 lambda[0] = d0;
1121 lambda[1] = d3;
1122 vec[0] = c;
1123 vec[1] = -s;
1124 vec[2] = s;
1125 vec[3] = c;
1126 }
1127 else
1128 {
1129 lambda[0] = d3;
1130 lambda[1] = d0;
1131 vec[0] = s;
1132 vec[1] = c;
1133 vec[2] = c;
1134 vec[3] = -s;
1135 }
1136}
1137
1138/// Compute the spectrum of the matrix of size 3 with given @a data, returning
1139/// the eigenvalues in the array @a lambda and the eigenvectors in the array @a
1140/// vec (listed consecutively).
1141template<> MFEM_HOST_DEVICE inline
1142void CalcEigenvalues<3>(const real_t *data, real_t *lambda, real_t *vec)
1143{
1144 real_t d11 = data[0];
1145 real_t d12 = data[3]; // use the upper triangular entries
1146 real_t d22 = data[4];
1147 real_t d13 = data[6];
1148 real_t d23 = data[7];
1149 real_t d33 = data[8];
1150
1151 real_t mult;
1152 {
1153 real_t d_max = fabs(d11);
1154 if (d_max < fabs(d22)) { d_max = fabs(d22); }
1155 if (d_max < fabs(d33)) { d_max = fabs(d33); }
1156 if (d_max < fabs(d12)) { d_max = fabs(d12); }
1157 if (d_max < fabs(d13)) { d_max = fabs(d13); }
1158 if (d_max < fabs(d23)) { d_max = fabs(d23); }
1159
1160 internal::GetScalingFactor(d_max, mult);
1161 }
1162
1163 d11 /= mult; d22 /= mult; d33 /= mult;
1164 d12 /= mult; d13 /= mult; d23 /= mult;
1165
1166 real_t aa = (d11 + d22 + d33)/3; // aa = tr(A)/3
1167 real_t c1 = d11 - aa;
1168 real_t c2 = d22 - aa;
1169 real_t c3 = d33 - aa;
1170
1171 real_t Q, R;
1172
1173 Q = (2*(d12*d12 + d13*d13 + d23*d23) + c1*c1 + c2*c2 + c3*c3)/6;
1174 R = (c1*(d23*d23 - c2*c3)+ d12*(d12*c3 - 2*d13*d23) + d13*d13*c2)/2;
1175
1176 if (Q <= 0.)
1177 {
1178 lambda[0] = lambda[1] = lambda[2] = aa;
1179 vec[0] = 1.; vec[3] = 0.; vec[6] = 0.;
1180 vec[1] = 0.; vec[4] = 1.; vec[7] = 0.;
1181 vec[2] = 0.; vec[5] = 0.; vec[8] = 1.;
1182 }
1183 else
1184 {
1185 real_t sqrtQ = sqrt(Q);
1186 real_t sqrtQ3 = Q*sqrtQ;
1187 // real_t sqrtQ3 = sqrtQ*sqrtQ*sqrtQ;
1188 // real_t sqrtQ3 = pow(Q, 1.5);
1189 real_t r;
1190 if (fabs(R) >= sqrtQ3)
1191 {
1192 if (R < 0.)
1193 {
1194 // R = -1.;
1195 r = 2*sqrtQ;
1196 }
1197 else
1198 {
1199 // R = 1.;
1200 r = -2*sqrtQ;
1201 }
1202 }
1203 else
1204 {
1205 R = R/sqrtQ3;
1206
1207 if (R < 0.)
1208 {
1209 r = -2*sqrtQ*cos((acos(R) + 2.0*M_PI)/3); // max
1210 }
1211 else
1212 {
1213 r = -2*sqrtQ*cos(acos(R)/3); // min
1214 }
1215 }
1216
1217 aa += r;
1218 c1 = d11 - aa;
1219 c2 = d22 - aa;
1220 c3 = d33 - aa;
1221
1222 // Type of Householder reflections: z --> mu ek, where k is the index
1223 // of the entry in z with:
1224 // mode == 0: smallest absolute value --> angle closest to pi/2
1225 // mode == 1: largest absolute value --> angle farthest from pi/2
1226 // Observations:
1227 // mode == 0 produces better eigenvectors, less accurate eigenvalues?
1228 // mode == 1 produces better eigenvalues, less accurate eigenvectors?
1229 const int mode = 0;
1230
1231 // Find a unit vector z = (z1,z2,z3) in the "near"-kernel of
1232 // | c1 d12 d13 |
1233 // | d12 c2 d23 | = A - aa*I
1234 // | d13 d23 c3 |
1235 // This vector is also an eigenvector for A corresponding to aa.
1236 // The vector z overwrites (c1,c2,c3).
1237 switch (internal::KernelVector3S(mode, d12, d13, d23, c1, c2, c3))
1238 {
1239 case 3:
1240 // 'aa' is a triple eigenvalue
1241 lambda[0] = lambda[1] = lambda[2] = aa;
1242 vec[0] = 1.; vec[3] = 0.; vec[6] = 0.;
1243 vec[1] = 0.; vec[4] = 1.; vec[7] = 0.;
1244 vec[2] = 0.; vec[5] = 0.; vec[8] = 1.;
1245 goto done_3d;
1246
1247 case 2:
1248 // ok, continue with the returned vector orthogonal to the kernel
1249 case 1:
1250 // ok, continue with the returned vector in the "near"-kernel
1251 ;
1252 }
1253
1254 // Using the eigenvector c=(c1,c2,c3) transform A into
1255 // | d11 0 0 |
1256 // A <-- Q P A P Q = | 0 d22 d23 |
1257 // | 0 d23 d33 |
1258 real_t v1, v2, v3, g;
1259 int k = internal::Reduce3S(mode, d11, d22, d33, d12, d13, d23,
1260 c1, c2, c3, v1, v2, v3, g);
1261 // Q = I - 2 v v^t
1262 // P - permutation matrix switching entries 1 and k
1263
1264 // find the eigenvalues and eigenvectors for
1265 // | d22 d23 |
1266 // | d23 d33 |
1267 real_t c, s;
1268 internal::Eigensystem2S(d23, d22, d33, c, s);
1269 // d22 <-> P Q (0, c, -s), d33 <-> P Q (0, s, c)
1270
1271 real_t *vec_1, *vec_2, *vec_3;
1272 if (d11 <= d22)
1273 {
1274 if (d22 <= d33)
1275 {
1276 lambda[0] = d11; vec_1 = vec;
1277 lambda[1] = d22; vec_2 = vec + 3;
1278 lambda[2] = d33; vec_3 = vec + 6;
1279 }
1280 else if (d11 <= d33)
1281 {
1282 lambda[0] = d11; vec_1 = vec;
1283 lambda[1] = d33; vec_3 = vec + 3;
1284 lambda[2] = d22; vec_2 = vec + 6;
1285 }
1286 else
1287 {
1288 lambda[0] = d33; vec_3 = vec;
1289 lambda[1] = d11; vec_1 = vec + 3;
1290 lambda[2] = d22; vec_2 = vec + 6;
1291 }
1292 }
1293 else
1294 {
1295 if (d11 <= d33)
1296 {
1297 lambda[0] = d22; vec_2 = vec;
1298 lambda[1] = d11; vec_1 = vec + 3;
1299 lambda[2] = d33; vec_3 = vec + 6;
1300 }
1301 else if (d22 <= d33)
1302 {
1303 lambda[0] = d22; vec_2 = vec;
1304 lambda[1] = d33; vec_3 = vec + 3;
1305 lambda[2] = d11; vec_1 = vec + 6;
1306 }
1307 else
1308 {
1309 lambda[0] = d33; vec_3 = vec;
1310 lambda[1] = d22; vec_2 = vec + 3;
1311 lambda[2] = d11; vec_1 = vec + 6;
1312 }
1313 }
1314
1315 vec_1[0] = c1;
1316 vec_1[1] = c2;
1317 vec_1[2] = c3;
1318 d22 = g*(v2*c - v3*s);
1319 d33 = g*(v2*s + v3*c);
1320 vec_2[0] = - v1*d22; vec_3[0] = - v1*d33;
1321 vec_2[1] = c - v2*d22; vec_3[1] = s - v2*d33;
1322 vec_2[2] = -s - v3*d22; vec_3[2] = c - v3*d33;
1323 switch (k)
1324 {
1325 case 2:
1326 internal::Swap(vec_2[0], vec_2[1]);
1327 internal::Swap(vec_3[0], vec_3[1]);
1328 break;
1329
1330 case 3:
1331 internal::Swap(vec_2[0], vec_2[2]);
1332 internal::Swap(vec_3[0], vec_3[2]);
1333 }
1334 }
1335
1336done_3d:
1337 lambda[0] *= mult;
1338 lambda[1] *= mult;
1339 lambda[2] *= mult;
1340}
1341
1342/// Return the i'th singular value of the matrix of size 2 with given @a data.
1343template<> MFEM_HOST_DEVICE inline
1344real_t CalcSingularvalue<2>(const real_t *data, const int i)
1345{
1346 real_t d0, d1, d2, d3;
1347 d0 = data[0];
1348 d1 = data[1];
1349 d2 = data[2];
1350 d3 = data[3];
1351 real_t mult;
1352
1353 {
1354 real_t d_max = fabs(d0);
1355 if (d_max < fabs(d1)) { d_max = fabs(d1); }
1356 if (d_max < fabs(d2)) { d_max = fabs(d2); }
1357 if (d_max < fabs(d3)) { d_max = fabs(d3); }
1358 internal::GetScalingFactor(d_max, mult);
1359 }
1360
1361 d0 /= mult;
1362 d1 /= mult;
1363 d2 /= mult;
1364 d3 /= mult;
1365
1366 real_t t = 0.5*((d0+d2)*(d0-d2)+(d1-d3)*(d1+d3));
1367 real_t s = d0*d2 + d1*d3;
1368 s = sqrt(0.5*(d0*d0 + d1*d1 + d2*d2 + d3*d3) + sqrt(t*t + s*s));
1369
1370 if (s == 0.0)
1371 {
1372 return 0.0;
1373 }
1374 t = fabs(d0*d3 - d1*d2) / s;
1375 if (t > s)
1376 {
1377 if (i == 0)
1378 {
1379 return t*mult;
1380 }
1381 return s*mult;
1382 }
1383 if (i == 0)
1384 {
1385 return s*mult;
1386 }
1387 return t*mult;
1388}
1389
1390/// Return the i'th singular value of the matrix of size 3 with given @a data.
1391template<> MFEM_HOST_DEVICE inline
1392real_t CalcSingularvalue<3>(const real_t *data, const int i)
1393{
1394 real_t d0, d1, d2, d3, d4, d5, d6, d7, d8;
1395 d0 = data[0]; d3 = data[3]; d6 = data[6];
1396 d1 = data[1]; d4 = data[4]; d7 = data[7];
1397 d2 = data[2]; d5 = data[5]; d8 = data[8];
1398 real_t mult;
1399 {
1400 real_t d_max = fabs(d0);
1401 if (d_max < fabs(d1)) { d_max = fabs(d1); }
1402 if (d_max < fabs(d2)) { d_max = fabs(d2); }
1403 if (d_max < fabs(d3)) { d_max = fabs(d3); }
1404 if (d_max < fabs(d4)) { d_max = fabs(d4); }
1405 if (d_max < fabs(d5)) { d_max = fabs(d5); }
1406 if (d_max < fabs(d6)) { d_max = fabs(d6); }
1407 if (d_max < fabs(d7)) { d_max = fabs(d7); }
1408 if (d_max < fabs(d8)) { d_max = fabs(d8); }
1409 internal::GetScalingFactor(d_max, mult);
1410 }
1411
1412 d0 /= mult; d1 /= mult; d2 /= mult;
1413 d3 /= mult; d4 /= mult; d5 /= mult;
1414 d6 /= mult; d7 /= mult; d8 /= mult;
1415
1416 real_t b11 = d0*d0 + d1*d1 + d2*d2;
1417 real_t b12 = d0*d3 + d1*d4 + d2*d5;
1418 real_t b13 = d0*d6 + d1*d7 + d2*d8;
1419 real_t b22 = d3*d3 + d4*d4 + d5*d5;
1420 real_t b23 = d3*d6 + d4*d7 + d5*d8;
1421 real_t b33 = d6*d6 + d7*d7 + d8*d8;
1422
1423 // double a, b, c;
1424 // a = -(b11 + b22 + b33);
1425 // b = b11*(b22 + b33) + b22*b33 - b12*b12 - b13*b13 - b23*b23;
1426 // c = b11*(b23*b23 - b22*b33) + b12*(b12*b33 - 2*b13*b23) + b13*b13*b22;
1427
1428 // double Q = (a * a - 3 * b) / 9;
1429 // double Q = (b12*b12 + b13*b13 + b23*b23 +
1430 // ((b11 - b22)*(b11 - b22) +
1431 // (b11 - b33)*(b11 - b33) +
1432 // (b22 - b33)*(b22 - b33))/6)/3;
1433 // Q = (3*(b12^2 + b13^2 + b23^2) +
1434 // ((b11 - b22)^2 + (b11 - b33)^2 + (b22 - b33)^2)/2)/9
1435 // or
1436 // Q = (1/6)*|B-tr(B)/3|_F^2
1437 // Q >= 0 and
1438 // Q = 0 <==> B = scalar * I
1439 // double R = (2 * a * a * a - 9 * a * b + 27 * c) / 54;
1440 real_t aa = (b11 + b22 + b33)/3; // aa = tr(B)/3
1441 real_t c1, c2, c3;
1442 // c1 = b11 - aa; // ((b11 - b22) + (b11 - b33))/3
1443 // c2 = b22 - aa; // ((b22 - b11) + (b22 - b33))/3
1444 // c3 = b33 - aa; // ((b33 - b11) + (b33 - b22))/3
1445 {
1446 real_t b11_b22 = ((d0-d3)*(d0+d3)+(d1-d4)*(d1+d4)+(d2-d5)*(d2+d5));
1447 real_t b22_b33 = ((d3-d6)*(d3+d6)+(d4-d7)*(d4+d7)+(d5-d8)*(d5+d8));
1448 real_t b33_b11 = ((d6-d0)*(d6+d0)+(d7-d1)*(d7+d1)+(d8-d2)*(d8+d2));
1449 c1 = (b11_b22 - b33_b11)/3;
1450 c2 = (b22_b33 - b11_b22)/3;
1451 c3 = (b33_b11 - b22_b33)/3;
1452 }
1453 real_t Q, R;
1454 Q = (2*(b12*b12 + b13*b13 + b23*b23) + c1*c1 + c2*c2 + c3*c3)/6;
1455 R = (c1*(b23*b23 - c2*c3)+ b12*(b12*c3 - 2*b13*b23) +b13*b13*c2)/2;
1456 // R = (-1/2)*det(B-(tr(B)/3)*I)
1457 // Note: 54*(det(S))^2 <= |S|_F^6, when S^t=S and tr(S)=0, S is 3x3
1458 // Therefore: R^2 <= Q^3
1459
1460 if (Q <= 0.) { ; }
1461
1462 // else if (fabs(R) >= sqrtQ3)
1463 // {
1464 // double det = (d[0] * (d[4] * d[8] - d[5] * d[7]) +
1465 // d[3] * (d[2] * d[7] - d[1] * d[8]) +
1466 // d[6] * (d[1] * d[5] - d[2] * d[4]));
1467 //
1468 // if (R > 0.)
1469 // {
1470 // if (i == 2)
1471 // // aa -= 2*sqrtQ;
1472 // return fabs(det)/(aa + sqrtQ);
1473 // else
1474 // aa += sqrtQ;
1475 // }
1476 // else
1477 // {
1478 // if (i != 0)
1479 // aa -= sqrtQ;
1480 // // aa = fabs(det)/sqrt(aa + 2*sqrtQ);
1481 // else
1482 // aa += 2*sqrtQ;
1483 // }
1484 // }
1485
1486 else
1487 {
1488 real_t sqrtQ = sqrt(Q);
1489 real_t sqrtQ3 = Q*sqrtQ;
1490 // double sqrtQ3 = sqrtQ*sqrtQ*sqrtQ;
1491 // double sqrtQ3 = pow(Q, 1.5);
1492 real_t r;
1493
1494 if (fabs(R) >= sqrtQ3)
1495 {
1496 if (R < 0.)
1497 {
1498 // R = -1.;
1499 r = 2*sqrtQ;
1500 }
1501 else
1502 {
1503 // R = 1.;
1504 r = -2*sqrtQ;
1505 }
1506 }
1507 else
1508 {
1509 R = R/sqrtQ3;
1510
1511 // if (fabs(R) <= 0.95)
1512 if (fabs(R) <= 0.9)
1513 {
1514 if (i == 2)
1515 {
1516 aa -= 2*sqrtQ*cos(acos(R)/3); // min
1517 }
1518 else if (i == 0)
1519 {
1520 aa -= 2*sqrtQ*cos((acos(R) + 2.0*M_PI)/3); // max
1521 }
1522 else
1523 {
1524 aa -= 2*sqrtQ*cos((acos(R) - 2.0*M_PI)/3); // mid
1525 }
1526 goto have_aa;
1527 }
1528
1529 if (R < 0.)
1530 {
1531 r = -2*sqrtQ*cos((acos(R) + 2.0*M_PI)/3); // max
1532 if (i == 0)
1533 {
1534 aa += r;
1535 goto have_aa;
1536 }
1537 }
1538 else
1539 {
1540 r = -2*sqrtQ*cos(acos(R)/3); // min
1541 if (i == 2)
1542 {
1543 aa += r;
1544 goto have_aa;
1545 }
1546 }
1547 }
1548
1549 // (tr(B)/3 + r) is the root which is separated from the other
1550 // two roots which are close to each other when |R| is close to 1
1551
1552 c1 -= r;
1553 c2 -= r;
1554 c3 -= r;
1555 // aa += r;
1556
1557 // Type of Householder reflections: z --> mu ek, where k is the index
1558 // of the entry in z with:
1559 // mode == 0: smallest absolute value --> angle closest to pi/2
1560 // (eliminate large entries)
1561 // mode == 1: largest absolute value --> angle farthest from pi/2
1562 // (eliminate small entries)
1563 const int mode = 1;
1564
1565 // Find a unit vector z = (z1,z2,z3) in the "near"-kernel of
1566 // | c1 b12 b13 |
1567 // | b12 c2 b23 | = B - aa*I
1568 // | b13 b23 c3 |
1569 // This vector is also an eigenvector for B corresponding to aa
1570 // The vector z overwrites (c1,c2,c3).
1571 switch (internal::KernelVector3S(mode, b12, b13, b23, c1, c2, c3))
1572 {
1573 case 3:
1574 aa += r;
1575 goto have_aa;
1576 case 2:
1577 // ok, continue with the returned vector orthogonal to the kernel
1578 case 1:
1579 // ok, continue with the returned vector in the "near"-kernel
1580 ;
1581 }
1582
1583 // Using the eigenvector c = (c1,c2,c3) to transform B into
1584 // | b11 0 0 |
1585 // B <-- Q P B P Q = | 0 b22 b23 |
1586 // | 0 b23 b33 |
1587 real_t v1, v2, v3, g;
1588 internal::Reduce3S(mode, b11, b22, b33, b12, b13, b23,
1589 c1, c2, c3, v1, v2, v3, g);
1590 // Q = I - g v v^t
1591 // P - permutation matrix switching rows and columns 1 and k
1592
1593 // find the eigenvalues of
1594 // | b22 b23 |
1595 // | b23 b33 |
1596 internal::Eigenvalues2S(b23, b22, b33);
1597
1598 if (i == 2)
1599 {
1600 aa = fmin(fmin(b11, b22), b33);
1601 }
1602 else if (i == 1)
1603 {
1604 if (b11 <= b22)
1605 {
1606 aa = (b22 <= b33) ? b22 : fmax(b11, b33);
1607 }
1608 else
1609 {
1610 aa = (b11 <= b33) ? b11 : fmax(b33, b22);
1611 }
1612 }
1613 else
1614 {
1615 aa = fmax(fmax(b11, b22), b33);
1616 }
1617 }
1618
1619have_aa:
1620
1621 return sqrt(fabs(aa))*mult; // take abs before we sort?
1622}
1623
1624
1625/// Assuming L.U = P.A for a factored matrix (m x m),
1626// compute x <- A x
1627//
1628// @param [in] data LU factorization of A
1629// @param [in] m square matrix height
1630// @param [in] ipiv array storing pivot information
1631// @param [in, out] x vector storing right-hand side and then solution
1632MFEM_HOST_DEVICE
1633inline void LUSolve(const real_t *data, const int m, const int *ipiv,
1634 real_t *x)
1635{
1636 // X <- P X
1637 for (int i = 0; i < m; i++)
1638 {
1639 internal::Swap<real_t>(x[i], x[ipiv[i]]);
1640 }
1641
1642 // X <- L^{-1} X
1643 for (int j = 0; j < m; j++)
1644 {
1645 const real_t x_j = x[j];
1646 for (int i = j + 1; i < m; i++)
1647 {
1648 x[i] -= data[i + j * m] * x_j;
1649 }
1650 }
1651
1652 // X <- U^{-1} X
1653 for (int j = m - 1; j >= 0; j--)
1654 {
1655 const real_t x_j = (x[j] /= data[j + j * m]);
1656 for (int i = 0; i < j; i++)
1657 {
1658 x[i] -= data[i + j * m] * x_j;
1659 }
1660 }
1661}
1662
1663} // namespace kernels
1664
1665} // namespace mfem
1666
1667#endif // MFEM_LINALG_KERNELS_HPP
Vector beta
const real_t alpha
Definition ex15.cpp:369
int dim
Definition ex24.cpp:53
real_t mu
Definition ex25.cpp:140
real_t b
Definition lissajous.cpp:42
real_t a
Definition lissajous.cpp:41
MFEM_HOST_DEVICE void CalcInverse(const T *data, T *inv_data)
Return the inverse of a matrix with given size and data into the matrix with data inv_data.
Definition kernels.hpp:246
MFEM_HOST_DEVICE real_t DistanceSquared(const real_t *x, const real_t *y)
Compute the square of the Euclidean distance to another vector.
Definition kernels.hpp:40
MFEM_HOST_DEVICE real_t CalcSingularvalue< 2 >(const real_t *data, const int i)
Return the i'th singular value of the matrix of size 2 with given data.
Definition kernels.hpp:1344
MFEM_HOST_DEVICE void MultAtB(const int Aheight, const int Awidth, const int Bwidth, const TA *Adata, const TB *Bdata, TC *AtBdata)
Multiply the transpose of a matrix of size Aheight x Awidth and data Adata with a matrix of size Ahei...
Definition kernels.hpp:390
MFEM_HOST_DEVICE void CalcEigenvalues< 2 >(const real_t *data, real_t *lambda, real_t *vec)
Definition kernels.hpp:1111
MFEM_HOST_DEVICE void CalcLeftInverse(const real_t *data, real_t *left_inv)
Given a matrix of size 2x1, 3x1, or 3x2, compute the left inverse.
MFEM_HOST_DEVICE void CalcAdjugate(const T *data, T *adj_data)
Return the adjugate of a matrix.
Definition kernels.hpp:256
MFEM_HOST_DEVICE void Add(const int height, const int width, const TALPHA alpha, const TA *Adata, const TB *Bdata, TC *Cdata)
Compute C = A + alpha*B, where the matrices A, B and C are of size height x width with data Adata,...
Definition kernels.hpp:266
MFEM_HOST_DEVICE void Mult(const int height, const int width, const TA *data, const TX *x, TY *y)
Matrix vector multiplication: y = A x, where the matrix A is of size height x width with given data,...
Definition kernels.hpp:163
MFEM_HOST_DEVICE real_t Norml2(const int size, const T *data)
Returns the l2 norm of the Vector with given size and data.
Definition kernels.hpp:133
MFEM_HOST_DEVICE void FNorm(real_t &scale_factor, real_t &scaled_fnorm2, const T *data)
Definition kernels.hpp:79
MFEM_HOST_DEVICE void CalcLeftInverse< 2, 1 >(const real_t *d, real_t *left_inv)
Definition kernels.hpp:1072
MFEM_HOST_DEVICE void MultABt(const int Aheight, const int Awidth, const int Bheight, const TA *Adata, const TB *Bdata, TC *ABtdata)
Multiply a matrix of size Aheight x Awidth and data Adata with the transpose of a matrix of size Bhei...
Definition kernels.hpp:363
MFEM_HOST_DEVICE void MultTranspose(const int height, const int width, const TA *data, const TX *x, TY *y)
Matrix transpose vector multiplication: y = At x, where the matrix A is of size height x width with g...
Definition kernels.hpp:196
MFEM_HOST_DEVICE real_t FNorm2(const T *data)
Compute the square of the Frobenius norm of the matrix.
Definition kernels.hpp:123
MFEM_HOST_DEVICE real_t CalcSingularvalue(const real_t *data, const int i)
Return the i'th singular value of the matrix of size dim with given data.
MFEM_HOST_DEVICE void Symmetrize(const int size, T *data)
Symmetrize a square matrix with given size and data: A -> (A+A^T)/2.
Definition kernels.hpp:223
MFEM_HOST_DEVICE void CalcLeftInverse< 3, 2 >(const real_t *d, real_t *left_inv)
Definition kernels.hpp:1089
MFEM_HOST_DEVICE void AddMultVWt(const real_t *v, const real_t *w, real_t *VWt)
Dense matrix operation: VWt += v w^t.
Definition kernels.hpp:67
MFEM_HOST_DEVICE void Diag(const real_t c, real_t *data)
Creates n x n diagonal matrix with diagonal elements c.
Definition kernels.hpp:49
MFEM_HOST_DEVICE void Set(const int height, const int width, const real_t alpha, const TA *Adata, TB *Bdata)
Compute B = alpha*A, where the matrices A and B are of size height x width with data Adata and Bdata.
Definition kernels.hpp:326
MFEM_HOST_DEVICE void CalcLeftInverse< 3, 1 >(const real_t *d, real_t *left_inv)
Definition kernels.hpp:1080
MFEM_HOST_DEVICE void CalcEigenvalues(const real_t *data, real_t *lambda, real_t *vec)
MFEM_HOST_DEVICE T Det(const T *data)
Compute the determinant of a square matrix of size dim with given data.
Definition kernels.hpp:237
MFEM_HOST_DEVICE real_t CalcSingularvalue< 3 >(const real_t *data, const int i)
Return the i'th singular value of the matrix of size 3 with given data.
Definition kernels.hpp:1392
MFEM_HOST_DEVICE void CalcEigenvalues< 3 >(const real_t *data, real_t *lambda, real_t *vec)
Definition kernels.hpp:1142
MFEM_HOST_DEVICE void Subtract(const real_t a, const real_t *x, const real_t *y, real_t *z)
Vector subtraction operation: z = a * (x - y)
Definition kernels.hpp:58
MFEM_HOST_DEVICE void LUSolve(const real_t *data, const int m, const int *ipiv, real_t *x)
Assuming L.U = P.A for a factored matrix (m x m),.
Definition kernels.hpp:1633
void Swap(Array< T > &, Array< T > &)
Definition array.hpp:648
MFEM_HOST_DEVICE void TAssignHD(const A_layout_t &A_layout, A_data_t &A_data, const scalar_t value)
Definition ttensor.hpp:264
MFEM_HOST_DEVICE scalar_t TAdjDetHD(const A_layout_t &a, const A_data_t &A, const B_layout_t &b, B_data_t &B)
Definition tmatrix.hpp:664
MFEM_HOST_DEVICE scalar_t TDetHD(const layout_t &a, const data_t &A)
Definition tmatrix.hpp:588
float real_t
Definition config.hpp:43
std::function< real_t(const Vector &)> f(real_t mass_coeff)
Definition lor_mms.hpp:30
MFEM_HOST_DEVICE void TAdjugateHD(const A_layout_t &a, const A_data_t &A, const B_layout_t &b, B_data_t &B)
Definition tmatrix.hpp:635
RefCoord t[3]
RefCoord s[3]