MFEM v4.7.0
Finite element discretization library
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
kernels.hpp File Reference

Go to the source code of this file.

Namespaces

namespace  mfem
 
namespace  mfem::kernels
 

Functions

template<int dim>
MFEM_HOST_DEVICE real_t mfem::kernels::DistanceSquared (const real_t *x, const real_t *y)
 Compute the square of the Euclidean distance to another vector.
 
template<int dim>
MFEM_HOST_DEVICE void mfem::kernels::Diag (const real_t c, real_t *data)
 Creates n x n diagonal matrix with diagonal elements c.
 
template<int dim>
MFEM_HOST_DEVICE void mfem::kernels::Subtract (const real_t a, const real_t *x, const real_t *y, real_t *z)
 Vector subtraction operation: z = a * (x - y)
 
template<int dim>
MFEM_HOST_DEVICE void mfem::kernels::AddMultVWt (const real_t *v, const real_t *w, real_t *VWt)
 Dense matrix operation: VWt += v w^t.
 
template<int H, int W, typename T >
MFEM_HOST_DEVICE void mfem::kernels::FNorm (real_t &scale_factor, real_t &scaled_fnorm2, const T *data)
 
template<int H, int W, typename T >
MFEM_HOST_DEVICE real_t mfem::kernels::FNorm (const T *data)
 Compute the Frobenius norm of the matrix.
 
template<int H, int W, typename T >
MFEM_HOST_DEVICE real_t mfem::kernels::FNorm2 (const T *data)
 Compute the square of the Frobenius norm of the matrix.
 
template<typename T >
MFEM_HOST_DEVICE real_t mfem::kernels::Norml2 (const int size, const T *data)
 Returns the l2 norm of the Vector with given size and data.
 
template<typename TA , typename TX , typename TY >
MFEM_HOST_DEVICE void mfem::kernels::Mult (const int height, const int width, const TA *data, const TX *x, TY *y)
 Matrix vector multiplication: y = A x, where the matrix A is of size height x width with given data, while x and y specify the data of the input and output vectors.
 
template<typename TA , typename TX , typename TY >
MFEM_HOST_DEVICE void mfem::kernels::MultTranspose (const int height, const int width, const TA *data, const TX *x, TY *y)
 Matrix transpose vector multiplication: y = At x, where the matrix A is of size height x width with given data, while x and y specify the data of the input and output vectors.
 
template<typename T >
MFEM_HOST_DEVICE void mfem::kernels::Symmetrize (const int size, T *data)
 Symmetrize a square matrix with given size and data: A -> (A+A^T)/2.
 
template<int dim, typename T >
MFEM_HOST_DEVICE T mfem::kernels::Det (const T *data)
 Compute the determinant of a square matrix of size dim with given data.
 
template<int dim, typename T >
MFEM_HOST_DEVICE void mfem::kernels::CalcInverse (const T *data, T *inv_data)
 Return the inverse of a matrix with given size and data into the matrix with data inv_data.
 
template<int dim, typename T >
MFEM_HOST_DEVICE void mfem::kernels::CalcAdjugate (const T *data, T *adj_data)
 Return the adjugate of a matrix.
 
template<typename TALPHA , typename TA , typename TB , typename TC >
MFEM_HOST_DEVICE void mfem::kernels::Add (const int height, const int width, const TALPHA alpha, const TA *Adata, const TB *Bdata, TC *Cdata)
 Compute C = A + alpha*B, where the matrices A, B and C are of size height x width with data Adata, Bdata and Cdata.
 
template<typename TALPHA , typename TBETA , typename TA , typename TB , typename TC >
MFEM_HOST_DEVICE void mfem::kernels::Add (const int height, const int width, const TALPHA alpha, const TA *Adata, const TBETA beta, const TB *Bdata, TC *Cdata)
 Compute C = alpha*A + beta*B, where the matrices A, B and C are of size height x width with data Adata, Bdata and Cdata.
 
template<typename TA , typename TB >
MFEM_HOST_DEVICE void mfem::kernels::Add (const int height, const int width, const TA *Adata, TB *Bdata)
 Compute B += A, where the matrices A and B are of size height x width with data Adata and Bdata.
 
template<typename TA , typename TB >
MFEM_HOST_DEVICE void mfem::kernels::Add (const int height, const int width, const real_t alpha, const TA *Adata, TB *Bdata)
 Compute B +=alpha*A, where the matrices A and B are of size height x width with data Adata and Bdata.
 
template<typename TA , typename TB >
MFEM_HOST_DEVICE void mfem::kernels::Set (const int height, const int width, const real_t alpha, const TA *Adata, TB *Bdata)
 Compute B = alpha*A, where the matrices A and B are of size height x width with data Adata and Bdata.
 
template<typename TA , typename TB , typename TC >
MFEM_HOST_DEVICE void mfem::kernels::Mult (const int Aheight, const int Awidth, const int Bwidth, const TB *Bdata, const TC *Cdata, TA *Adata)
 Matrix-matrix multiplication: A = B * C, where the matrices A, B and C are of sizes Aheight x Awidth, Aheight x Bwidth and Bwidth x Awidth, respectively.
 
template<typename TA , typename TB , typename TC >
MFEM_HOST_DEVICE void mfem::kernels::MultABt (const int Aheight, const int Awidth, const int Bheight, const TA *Adata, const TB *Bdata, TC *ABtdata)
 Multiply a matrix of size Aheight x Awidth and data Adata with the transpose of a matrix of size Bheight x Awidth and data Bdata: A * Bt. Return the result in a matrix with data ABtdata.
 
template<typename TA , typename TB , typename TC >
MFEM_HOST_DEVICE void mfem::kernels::MultAtB (const int Aheight, const int Awidth, const int Bwidth, const TA *Adata, const TB *Bdata, TC *AtBdata)
 Multiply the transpose of a matrix of size Aheight x Awidth and data Adata with a matrix of size Aheight x Bwidth and data Bdata: At * B. Return the result in a matrix with data AtBdata.
 
template<int HEIGHT, int WIDTH>
MFEM_HOST_DEVICE void mfem::kernels::CalcLeftInverse (const real_t *data, real_t *left_inv)
 Given a matrix of size 2x1, 3x1, or 3x2, compute the left inverse.
 
template<int dim>
MFEM_HOST_DEVICE void mfem::kernels::CalcEigenvalues (const real_t *data, real_t *lambda, real_t *vec)
 
template<int dim>
MFEM_HOST_DEVICE real_t mfem::kernels::CalcSingularvalue (const real_t *data, const int i)
 Return the i'th singular value of the matrix of size dim with given data.
 
template<>
MFEM_HOST_DEVICE void mfem::kernels::CalcLeftInverse< 2, 1 > (const real_t *d, real_t *left_inv)
 
template<>
MFEM_HOST_DEVICE void mfem::kernels::CalcLeftInverse< 3, 1 > (const real_t *d, real_t *left_inv)
 
template<>
MFEM_HOST_DEVICE void mfem::kernels::CalcLeftInverse< 3, 2 > (const real_t *d, real_t *left_inv)
 
template<>
MFEM_HOST_DEVICE void mfem::kernels::CalcEigenvalues< 2 > (const real_t *data, real_t *lambda, real_t *vec)
 
template<>
MFEM_HOST_DEVICE void mfem::kernels::CalcEigenvalues< 3 > (const real_t *data, real_t *lambda, real_t *vec)
 
template<>
MFEM_HOST_DEVICE real_t mfem::kernels::CalcSingularvalue< 2 > (const real_t *data, const int i)
 Return the i'th singular value of the matrix of size 2 with given data.
 
template<>
MFEM_HOST_DEVICE real_t mfem::kernels::CalcSingularvalue< 3 > (const real_t *data, const int i)
 Return the i'th singular value of the matrix of size 3 with given data.
 
MFEM_HOST_DEVICE void mfem::kernels::LUSolve (const real_t *data, const int m, const int *ipiv, real_t *x)
 Assuming L.U = P.A for a factored matrix (m x m),.