|
| PointMatrix () |
|
| PointMatrix (const Point &p0, const Point &p1) |
|
| PointMatrix (const Point &p0, const Point &p1, const Point &p2) |
|
| PointMatrix (const Point &p0, const Point &p1, const Point &p2, const Point &p3) |
|
| PointMatrix (const Point &p0, const Point &p1, const Point &p2, const Point &p3, const Point &p4) |
|
| PointMatrix (const Point &p0, const Point &p1, const Point &p2, const Point &p3, const Point &p4, const Point &p5) |
|
| PointMatrix (const Point &p0, const Point &p1, const Point &p2, const Point &p3, const Point &p4, const Point &p5, const Point &p6, const Point &p7) |
|
Point & | operator() (int i) |
|
const Point & | operator() (int i) const |
|
bool | operator== (const PointMatrix &pm) const |
|
void | GetMatrix (DenseMatrix &point_matrix) const |
|
The PointMatrix stores the coordinates of the slave face using the master face coordinate as reference.
In 2D, the point matrix has the orientation of the parent edge, so its columns need to be flipped when applying it, see ApplyLocalSlaveTransformation.
In 3D, the orientation part of Elem2Inf is encoded in the point matrix.
The following transformation gives the relation between the reference quad face coordinates (xi, eta) in [0,1]^2, and the fine quad face coordinates (x, y): x = a0*(1-xi)*(1-eta) + a1*xi*(1-eta) + a2*xi*eta + a3*(1-xi)*eta y = b0*(1-xi)*(1-eta) + b1*xi*(1-eta) + b2*xi*eta + b3*(1-xi)*eta
Definition at line 997 of file ncmesh.hpp.