MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
ex1p.cpp
Go to the documentation of this file.
1// MFEM Example 1 - Parallel Version
2// PUMI Modification
3//
4// Compile with: make ex1p
5//
6// Sample runs:
7// mpirun -np 8 ex1p -m ../../data/pumi/parallel/Kova/Kova100k_8.smb
8// -p ../../data/pumi/geom/Kova.dmg -o 1 -go 2
9//
10// Note: Example models + meshes for the PUMI examples can be downloaded
11// from github.com/mfem/data/pumi. After downloading we recommend
12// creating a symbolic link to the above directory in ../../data.
13//
14// Description: This example code demonstrates the use of MFEM to define a
15// simple finite element discretization of the Laplace problem
16// -Delta u = 1 with homogeneous Dirichlet boundary conditions.
17// Specifically, we discretize using a FE space of the specified
18// order, or if order < 1 using an isoparametric/isogeometric
19// space (i.e. quadratic for quadratic curvilinear mesh, NURBS for
20// NURBS mesh, etc.)
21//
22// The example highlights the use of mesh refinement, finite
23// element grid functions, as well as linear and bilinear forms
24// corresponding to the left-hand side and right-hand side of the
25// discrete linear system. We also cover the explicit elimination
26// of essential boundary conditions, static condensation, and the
27// optional connection to the GLVis tool for visualization.
28//
29// This PUMI modification demonstrates how PUMI's API can be used
30// to load a parallel PUMI mesh classified on a geometric model
31// and then generate the corresponding parallel MFEM mesh. The
32// example also performs a "uniform" refinement, similar to the
33// MFEM examples, for coarse meshes. However, the refinement is
34// performed using the PUMI API. The inputs are a Parasolid
35// model, "*.xmt_txt" and SCOREC parallel meshes "*.smb". The
36// option "-o" is used for the Finite Element order and "-go" for
37// the geometry order. Note that they can be used independently:
38// "-o 8 -go 3" solves for 8th order FE on third order geometry.
39//
40// NOTE: Model/Mesh files for this example are in the (large) data file
41// repository of MFEM here https://github.com/mfem/data under the
42// folder named "pumi", which consists of the following sub-folders:
43// a) geom --> model files
44// b) parallel --> parallel pumi mesh files
45// c) serial --> serial pumi mesh files
46
47
48#include "mfem.hpp"
49#include <fstream>
50#include <iostream>
51
52#ifdef MFEM_USE_SIMMETRIX
53#include <SimUtil.h>
54#include <gmi_sim.h>
55#endif
56#include <apfMDS.h>
57#include <gmi_null.h>
58#include <PCU.h>
59#include <apfConvert.h>
60#include <gmi_mesh.h>
61#include <crv.h>
62
63#ifndef MFEM_USE_PUMI
64#error This example requires that MFEM is built with MFEM_USE_PUMI=YES
65#endif
66
67using namespace std;
68using namespace mfem;
69
70int main(int argc, char *argv[])
71{
72 // 1. Initialize MPI and HYPRE.
73 Mpi::Init(argc, argv);
74 int num_procs = Mpi::WorldSize();
75 int myid = Mpi::WorldRank();
77
78 // 2. Parse command-line options.
79 const char *mesh_file = "../../data/pumi/parallel/Kova/Kova100k_8.smb";
80#ifdef MFEM_USE_SIMMETRIX
81 const char *model_file = "../../data/pumi/geom/Kova.x_t";
82#else
83 const char *model_file = "../../data/pumi/geom/Kova.dmg";
84#endif
85 int order = 1;
86 bool static_cond = false;
87 bool visualization = 1;
88 int geom_order = 1;
89
90 OptionsParser args(argc, argv);
91 args.AddOption(&mesh_file, "-m", "--mesh",
92 "Mesh file to use.");
93 args.AddOption(&order, "-o", "--order",
94 "Finite element order (polynomial degree) or -1 for"
95 " isoparametric space.");
96 args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
97 "--no-static-condensation", "Enable static condensation.");
98 args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
99 "--no-visualization",
100 "Enable or disable GLVis visualization.");
101 args.AddOption(&model_file, "-p", "--parasolid",
102 "Parasolid model to use.");
103 args.AddOption(&geom_order, "-go", "--geometry_order",
104 "Geometric order of the model");
105 args.Parse();
106 if (!args.Good())
107 {
108 if (myid == 0)
109 {
110 args.PrintUsage(cout);
111 }
112 return 1;
113 }
114 if (myid == 0)
115 {
116 args.PrintOptions(cout);
117 }
118
119 // 3. Read the SCOREC Mesh
120 PCU_Comm_Init();
121#ifdef MFEM_USE_SIMMETRIX
122 Sim_readLicenseFile(0);
123 gmi_sim_start();
124 gmi_register_sim();
125#endif
126 gmi_register_mesh();
127
128 apf::Mesh2* pumi_mesh;
129 pumi_mesh = apf::loadMdsMesh(model_file, mesh_file);
130
131 // 4. Increase the geometry order and refine the mesh if necessary. Parallel
132 // uniform refinement is performed if the total number of elements is less
133 // than 10,000.
134 int dim = pumi_mesh->getDimension();
135 int nEle = pumi_mesh->count(dim);
136 int ref_levels = (int)floor(log(10000./nEle)/log(2.)/dim);
137
138 if (geom_order > 1)
139 {
140 crv::BezierCurver bc(pumi_mesh, geom_order, 2);
141 bc.run();
142 }
143
144 // Perform Uniform refinement
145 if (ref_levels > 1)
146 {
147 auto uniInput = ma::configureUniformRefine(pumi_mesh, ref_levels);
148
149 if (geom_order > 1)
150 {
151 crv::adapt(uniInput);
152 }
153 else
154 {
155 ma::adapt(uniInput);
156 }
157 }
158
159 pumi_mesh->verify();
160
161 // 5. Create the parallel MFEM mesh object from the parallel PUMI mesh.
162 // We can handle triangular and tetrahedral meshes. Note that the
163 // mesh resolution is performed on the PUMI mesh.
164 ParMesh *pmesh = new ParPumiMesh(MPI_COMM_WORLD, pumi_mesh);
165
166 // 6. Define a parallel finite element space on the parallel mesh. Here we
167 // use continuous Lagrange finite elements of the specified order. If
168 // order < 1, we instead use an isoparametric/isogeometric space.
170 if (order > 0)
171 {
172 fec = new H1_FECollection(order, dim);
173 }
174 else if (pmesh->GetNodes())
175 {
176 fec = pmesh->GetNodes()->OwnFEC();
177 if (myid == 0)
178 {
179 cout << "Using isoparametric FEs: " << fec->Name() << endl;
180 }
181 }
182 else
183 {
184 fec = new H1_FECollection(order = 1, dim);
185 }
186 ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
187 HYPRE_BigInt size = fespace->GlobalTrueVSize();
188 if (myid == 0)
189 {
190 cout << "Number of finite element unknowns: " << size << endl;
191 }
192
193 // 7. Determine the list of true (i.e. parallel conforming) essential
194 // boundary dofs. In this example, the boundary conditions are defined
195 // by marking all the boundary attributes from the mesh as essential
196 // (Dirichlet) and converting them to a list of true dofs.
197 Array<int> ess_tdof_list;
198 if (pmesh->bdr_attributes.Size())
199 {
200 Array<int> ess_bdr(pmesh->bdr_attributes.Max());
201 ess_bdr = 1;
202 fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
203 }
204
205 // 8. Set up the parallel linear form b(.) which corresponds to the
206 // right-hand side of the FEM linear system, which in this case is
207 // (1,phi_i) where phi_i are the basis functions in fespace.
208 ParLinearForm *b = new ParLinearForm(fespace);
209 ConstantCoefficient one(1.0);
210 b->AddDomainIntegrator(new DomainLFIntegrator(one));
211 b->Assemble();
212
213 // 9. Define the solution vector x as a parallel finite element grid function
214 // corresponding to fespace. Initialize x with initial guess of zero,
215 // which satisfies the boundary conditions.
216 ParGridFunction x(fespace);
217 x = 0.0;
218
219 // 10. Set up the parallel bilinear form a(.,.) on the finite element space
220 // corresponding to the Laplacian operator -Delta, by adding the Diffusion
221 // domain integrator.
222 ParBilinearForm *a = new ParBilinearForm(fespace);
223 a->AddDomainIntegrator(new DiffusionIntegrator(one));
224
225 // 11. Assemble the parallel bilinear form and the corresponding linear
226 // system, applying any necessary transformations such as: parallel
227 // assembly, eliminating boundary conditions, applying conforming
228 // constraints for non-conforming AMR, static condensation, etc.
229 if (static_cond) { a->EnableStaticCondensation(); }
230 a->Assemble();
231
233 Vector B, X;
234 a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);
235
236 if (myid == 0)
237 {
238 cout << "Size of linear system: " << A.GetGlobalNumRows() << endl;
239 }
240
241 // 12. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
242 // preconditioner from hypre.
243 HypreSolver *amg = new HypreBoomerAMG(A);
244 HyprePCG *pcg = new HyprePCG(A);
245 pcg->SetTol(1e-12);
246 pcg->SetMaxIter(200);
247 pcg->SetPrintLevel(2);
248 pcg->SetPreconditioner(*amg);
249 pcg->Mult(B, X);
250
251 // 13. Recover the parallel grid function corresponding to X. This is the
252 // local finite element solution on each processor.
253 a->RecoverFEMSolution(X, *b, x);
254
255 // 14. Save the refined mesh and the solution in parallel. This output can
256 // be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
257 {
258 ostringstream mesh_name, sol_name;
259 mesh_name << "mesh." << setfill('0') << setw(6) << myid;
260 sol_name << "sol." << setfill('0') << setw(6) << myid;
261
262 ofstream mesh_ofs(mesh_name.str().c_str());
263 mesh_ofs.precision(8);
264 pmesh->Print(mesh_ofs);
265
266 ofstream sol_ofs(sol_name.str().c_str());
267 sol_ofs.precision(8);
268 x.Save(sol_ofs);
269 }
270
271 // 15. Send the solution by socket to a GLVis server.
272 if (visualization)
273 {
274 char vishost[] = "localhost";
275 int visport = 19916;
276 socketstream sol_sock(vishost, visport);
277 sol_sock << "parallel " << num_procs << " " << myid << "\n";
278 sol_sock.precision(8);
279 sol_sock << "solution\n" << *pmesh << x << flush;
280 }
281
282 // 16. Free the used memory.
283 delete pcg;
284 delete amg;
285 delete a;
286 delete b;
287 delete fespace;
288 if (order > 0) { delete fec; }
289 delete pmesh;
290
291 pumi_mesh->destroyNative();
292 apf::destroyMesh(pumi_mesh);
293 PCU_Comm_Free();
294
295#ifdef MFEM_USE_SIMMETRIX
296 gmi_sim_stop();
297 Sim_unregisterAllKeys();
298#endif
299
300 return 0;
301}
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
Definition array.cpp:68
int Size() const
Return the logical size of the array.
Definition array.hpp:144
A coefficient that is constant across space and time.
Class for domain integration .
Definition lininteg.hpp:109
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
Definition fe_coll.hpp:27
virtual const char * Name() const
Definition fe_coll.hpp:79
Arbitrary order H1-conforming (continuous) finite elements.
Definition fe_coll.hpp:260
The BoomerAMG solver in hypre.
Definition hypre.hpp:1691
PCG solver in hypre.
Definition hypre.hpp:1275
void SetPrintLevel(int print_lvl)
Definition hypre.cpp:4156
void SetPreconditioner(HypreSolver &precond)
Set the hypre solver to be used as a preconditioner.
Definition hypre.cpp:4161
virtual void Mult(const HypreParVector &b, HypreParVector &x) const
Solve Ax=b with hypre's PCG.
Definition hypre.cpp:4184
void SetMaxIter(int max_iter)
Definition hypre.cpp:4146
void SetTol(real_t tol)
Definition hypre.cpp:4136
Wrapper for hypre's ParCSR matrix class.
Definition hypre.hpp:388
HYPRE_BigInt GetGlobalNumRows() const
Return the global number of rows.
Definition hypre.hpp:679
Abstract class for hypre's solvers and preconditioners.
Definition hypre.hpp:1162
static void Init()
Initialize hypre by calling HYPRE_Init() and set default options. After calling Hypre::Init(),...
Definition hypre.hpp:74
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
Definition mesh.hpp:282
void GetNodes(Vector &node_coord) const
Definition mesh.cpp:8973
static int WorldRank()
Return the MPI rank in MPI_COMM_WORLD.
static int WorldSize()
Return the size of MPI_COMM_WORLD.
static void Init(int &argc, char **&argv, int required=default_thread_required, int *provided=nullptr)
Singleton creation with Mpi::Init(argc, argv).
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
void PrintUsage(std::ostream &out) const
Print the usage message.
void PrintOptions(std::ostream &out) const
Print the options.
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
Definition optparser.hpp:82
bool Good() const
Return true if the command line options were parsed successfully.
Class for parallel bilinear form.
Abstract parallel finite element space.
Definition pfespace.hpp:29
void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1) const override
HYPRE_BigInt GlobalTrueVSize() const
Definition pfespace.hpp:285
Class for parallel grid function.
Definition pgridfunc.hpp:33
void Save(std::ostream &out) const override
Class for parallel linear form.
Class for parallel meshes.
Definition pmesh.hpp:34
void Print(std::ostream &out=mfem::out, const std::string &comments="") const override
Definition pmesh.cpp:4801
Class for PUMI parallel meshes.
Definition pumi.hpp:70
Vector data type.
Definition vector.hpp:80
int dim
Definition ex24.cpp:53
int main()
HYPRE_Int HYPRE_BigInt
real_t b
Definition lissajous.cpp:42
real_t a
Definition lissajous.cpp:41
const int visport
const char vishost[]