MFEM v4.7.0
Finite element discretization library
|
#include <bilininteg.hpp>
Public Member Functions | |
DiffusionIntegrator (const IntegrationRule *ir=nullptr) | |
Construct a diffusion integrator with coefficient Q = 1. | |
DiffusionIntegrator (Coefficient &q, const IntegrationRule *ir=nullptr) | |
Construct a diffusion integrator with a scalar coefficient q. | |
DiffusionIntegrator (VectorCoefficient &q, const IntegrationRule *ir=nullptr) | |
Construct a diffusion integrator with a vector coefficient q. | |
DiffusionIntegrator (MatrixCoefficient &q, const IntegrationRule *ir=nullptr) | |
Construct a diffusion integrator with a matrix coefficient q. | |
virtual void | AssembleElementMatrix (const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat) |
virtual void | AssembleElementMatrix2 (const FiniteElement &trial_fe, const FiniteElement &test_fe, ElementTransformation &Trans, DenseMatrix &elmat) |
virtual void | AssemblePatchMatrix (const int patch, const FiniteElementSpace &fes, SparseMatrix *&smat) |
virtual void | AssembleNURBSPA (const FiniteElementSpace &fes) |
Method defining partial assembly on NURBS patches. | |
void | AssemblePatchPA (const int patch, const FiniteElementSpace &fes) |
virtual void | AssembleElementVector (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, Vector &elvect) |
Perform the local action of the BilinearFormIntegrator. | |
virtual void | ComputeElementFlux (const FiniteElement &el, ElementTransformation &Trans, Vector &u, const FiniteElement &fluxelem, Vector &flux, bool with_coef=true, const IntegrationRule *ir=NULL) |
Virtual method required for Zienkiewicz-Zhu type error estimators. | |
virtual real_t | ComputeFluxEnergy (const FiniteElement &fluxelem, ElementTransformation &Trans, Vector &flux, Vector *d_energy=NULL) |
Virtual method required for Zienkiewicz-Zhu type error estimators. | |
virtual void | AssembleMF (const FiniteElementSpace &fes) |
Method defining matrix-free assembly. | |
virtual void | AssemblePA (const FiniteElementSpace &fes) |
Method defining partial assembly. | |
virtual void | AssembleEA (const FiniteElementSpace &fes, Vector &emat, const bool add) |
Method defining element assembly. | |
virtual void | AssembleDiagonalPA (Vector &diag) |
Assemble diagonal and add it to Vector diag. | |
virtual void | AssembleDiagonalMF (Vector &diag) |
Assemble diagonal and add it to Vector diag. | |
virtual void | AddMultMF (const Vector &, Vector &) const |
virtual void | AddMultPA (const Vector &, Vector &) const |
Method for partially assembled action. | |
virtual void | AddMultTransposePA (const Vector &, Vector &) const |
Method for partially assembled transposed action. | |
virtual void | AddMultNURBSPA (const Vector &, Vector &) const |
Method for partially assembled action on NURBS patches. | |
void | AddMultPatchPA (const int patch, const Vector &x, Vector &y) const |
bool | SupportsCeed () const |
Indicates whether this integrator can use a Ceed backend. | |
Coefficient * | GetCoefficient () const |
virtual void | AssemblePA (const FiniteElementSpace &trial_fes, const FiniteElementSpace &test_fes) |
Public Member Functions inherited from mfem::BilinearFormIntegrator | |
virtual void | AssemblePABoundary (const FiniteElementSpace &fes) |
virtual void | AssemblePAInteriorFaces (const FiniteElementSpace &fes) |
virtual void | AssemblePABoundaryFaces (const FiniteElementSpace &fes) |
virtual void | AssembleDiagonalPA_ADAt (const Vector &D, Vector &diag) |
Assemble diagonal of \(A D A^T\) ( \(A\) is this integrator) and add it to diag. | |
virtual void | AddMultTransposeMF (const Vector &x, Vector &y) const |
virtual void | AssembleEAInteriorFaces (const FiniteElementSpace &fes, Vector &ea_data_int, Vector &ea_data_ext, const bool add=true) |
virtual void | AssembleEABoundaryFaces (const FiniteElementSpace &fes, Vector &ea_data_bdr, const bool add=true) |
virtual void | AssembleFaceMatrix (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
virtual void | AssembleFaceMatrix (const FiniteElement &trial_face_fe, const FiniteElement &test_fe1, const FiniteElement &test_fe2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
virtual void | AssembleTraceFaceMatrix (int elem, const FiniteElement &trial_face_fe, const FiniteElement &test_fe, FaceElementTransformations &Trans, DenseMatrix &elmat) |
virtual void | AssembleFaceVector (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, Vector &elvect) |
Perform the local action of the BilinearFormIntegrator resulting from a face integral term. Note that the default implementation in the base class is general but not efficient. | |
virtual void | AssembleElementGrad (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, DenseMatrix &elmat) |
Assemble the local gradient matrix. | |
virtual void | AssembleFaceGrad (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, DenseMatrix &elmat) |
Assemble the local action of the gradient of the NonlinearFormIntegrator resulting from a face integral term. | |
virtual bool | RequiresFaceNormalDerivatives () const |
For bilinear forms on element faces, specifies if the normal derivatives are needed on the faces or just the face restriction. | |
virtual void | AddMultPAFaceNormalDerivatives (const Vector &x, const Vector &dxdn, Vector &y, Vector &dydn) const |
Method for partially assembled action. | |
virtual | ~BilinearFormIntegrator () |
Public Member Functions inherited from mfem::NonlinearFormIntegrator | |
virtual void | SetIntRule (const IntegrationRule *ir) |
Prescribe a fixed IntegrationRule to use (when ir != NULL) or let the integrator choose (when ir == NULL). | |
void | SetIntegrationMode (Mode m) |
void | SetNURBSPatchIntRule (NURBSMeshRules *pr) |
For patchwise integration, SetNURBSPatchIntRule must be called. | |
bool | HasNURBSPatchIntRule () const |
bool | Patchwise () const |
void | SetIntegrationRule (const IntegrationRule &ir) |
Prescribe a fixed IntegrationRule to use. | |
void | SetPAMemoryType (MemoryType mt) |
const IntegrationRule * | GetIntegrationRule () const |
Get the integration rule of the integrator (possibly NULL). | |
virtual real_t | GetElementEnergy (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun) |
Compute the local energy. | |
virtual void | AssembleGradPA (const Vector &x, const FiniteElementSpace &fes) |
Prepare the integrator for partial assembly (PA) gradient evaluations on the given FE space fes at the state x. | |
virtual real_t | GetLocalStateEnergyPA (const Vector &x) const |
Compute the local (to the MPI rank) energy with partial assembly. | |
virtual void | AddMultGradPA (const Vector &x, Vector &y) const |
Method for partially assembled gradient action. | |
virtual void | AssembleGradDiagonalPA (Vector &diag) const |
Method for computing the diagonal of the gradient with partial assembly. | |
ceed::Operator & | GetCeedOp () |
virtual | ~NonlinearFormIntegrator () |
Static Public Member Functions | |
static const IntegrationRule & | GetRule (const FiniteElement &trial_fe, const FiniteElement &test_fe) |
Protected Attributes | |
Coefficient * | Q |
VectorCoefficient * | VQ |
MatrixCoefficient * | MQ |
Protected Attributes inherited from mfem::NonlinearFormIntegrator | |
const IntegrationRule * | IntRule |
Mode | integrationMode = Mode::ELEMENTWISE |
NURBSMeshRules * | patchRules = nullptr |
ceed::Operator * | ceedOp |
MemoryType | pa_mt = MemoryType::DEFAULT |
Additional Inherited Members | |
Public Types inherited from mfem::NonlinearFormIntegrator | |
enum | Mode { ELEMENTWISE = 0 , PATCHWISE = 1 , PATCHWISE_REDUCED = 2 } |
Protected Member Functions inherited from mfem::BilinearFormIntegrator | |
BilinearFormIntegrator (const IntegrationRule *ir=NULL) | |
Protected Member Functions inherited from mfem::NonlinearFormIntegrator | |
NonlinearFormIntegrator (const IntegrationRule *ir=NULL) | |
Class for integrating the bilinear form \(a(u,v) := (Q \nabla u, \nabla v)\) where \(Q\) can be a scalar or a matrix coefficient.
Definition at line 2128 of file bilininteg.hpp.
|
inline |
Construct a diffusion integrator with coefficient Q = 1.
Definition at line 2206 of file bilininteg.hpp.
|
inline |
Construct a diffusion integrator with a scalar coefficient q.
Definition at line 2211 of file bilininteg.hpp.
|
inline |
Construct a diffusion integrator with a vector coefficient q.
Definition at line 2216 of file bilininteg.hpp.
|
inline |
Construct a diffusion integrator with a matrix coefficient q.
Definition at line 2222 of file bilininteg.hpp.
Perform the action of integrator on the input x and add the result to the output y. Both x and y are E-vectors, i.e. they represent the element-wise discontinuous version of the FE space.
This method can be called only after the method AssembleMF() has been called.
Reimplemented from mfem::BilinearFormIntegrator.
|
virtual |
Method for partially assembled action on NURBS patches.
Reimplemented from mfem::BilinearFormIntegrator.
Method for partially assembled action.
Perform the action of integrator on the input x and add the result to the output y. Both x and y are E-vectors, i.e. they represent the element-wise discontinuous version of the FE space.
This method can be called only after the method AssemblePA() has been called.
Reimplemented from mfem::BilinearFormIntegrator.
void mfem::DiffusionIntegrator::AddMultPatchPA | ( | const int | patch, |
const Vector & | x, | ||
Vector & | y ) const |
|
virtual |
Method for partially assembled transposed action.
Perform the transpose action of integrator on the input x and add the result to the output y. Both x and y are E-vectors, i.e. they represent the element-wise discontinuous version of the FE space.
This method can be called only after the method AssemblePA() has been called.
Reimplemented from mfem::BilinearFormIntegrator.
|
virtual |
Assemble diagonal and add it to Vector diag.
Reimplemented from mfem::BilinearFormIntegrator.
|
virtual |
Assemble diagonal and add it to Vector diag.
Reimplemented from mfem::BilinearFormIntegrator.
|
virtual |
Method defining element assembly.
The result of the element assembly is added to the emat Vector if add is true. Otherwise, if add is false, we set emat.
Reimplemented from mfem::BilinearFormIntegrator.
|
virtual |
Given a particular Finite Element computes the element stiffness matrix elmat.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 838 of file bilininteg.cpp.
|
virtual |
Given a trial and test Finite Element computes the element stiffness matrix elmat.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 931 of file bilininteg.cpp.
|
virtual |
Perform the local action of the BilinearFormIntegrator.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 1015 of file bilininteg.cpp.
|
virtual |
Method defining matrix-free assembly.
Used with BilinearFormIntegrators that have different spaces. The result of fully matrix-free assembly is stored internally so that it can be used later in the methods AddMultMF() and AddMultTransposeMF().
Reimplemented from mfem::BilinearFormIntegrator.
|
virtual |
Method defining partial assembly on NURBS patches.
The result of the partial assembly is stored internally so that it can be used later in the method AddMultNURBSPA().
Reimplemented from mfem::BilinearFormIntegrator.
|
virtual |
Method defining partial assembly.
The result of the partial assembly is stored internally so that it can be used later in the methods AddMultPA() and AddMultTransposePA().
Reimplemented from mfem::BilinearFormIntegrator.
|
virtual |
Used with BilinearFormIntegrators that have different spaces.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 50 of file bilininteg.cpp.
|
virtual |
Given a particular NURBS patch, computes the patch matrix as a SparseMatrix smat.
Reimplemented from mfem::BilinearFormIntegrator.
void mfem::DiffusionIntegrator::AssemblePatchPA | ( | const int | patch, |
const FiniteElementSpace & | fes ) |
|
virtual |
Virtual method required for Zienkiewicz-Zhu type error estimators.
The purpose of the method is to compute a local "flux" finite element function given a local finite element solution. The "flux" function has to be computed in terms of its coefficients (represented by the Vector flux) which multiply the basis functions defined by the FiniteElement fluxelem. Typically, the "flux" function will have more than one component and consequently flux should be store the coefficients of all components: first all coefficient for component 0, then all coefficients for component 1, etc. What the "flux" function represents depends on the specific integrator. For example, in the case of DiffusionIntegrator, the flux is the gradient of the solution multiplied by the diffusion coefficient.
[in] | el | FiniteElement of the solution. |
[in] | Trans | The ElementTransformation describing the physical position of the mesh element. |
[in] | u | Solution coefficients representing the expansion of the solution function in the basis of el. |
[in] | fluxelem | FiniteElement of the "flux". |
[out] | flux | "Flux" coefficients representing the expansion of the "flux" function in the basis of fluxelem. The size of flux as a Vector has to be set by this method, e.g. using Vector::SetSize(). |
[in] | with_coef | If zero (the default value is 1) the implementation of the method may choose not to scale the "flux" function by any coefficients describing the integrator. |
[in] | ir | If passed (the default value is NULL), the implementation of the method will ignore the integration rule provided by the fluxelem parameter and, instead, compute the discrete flux at the points specified by the integration rule ir. |
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 1097 of file bilininteg.cpp.
|
virtual |
Virtual method required for Zienkiewicz-Zhu type error estimators.
The purpose of this method is to compute a local number that measures the energy of a given "flux" function (see ComputeElementFlux() for a description of the "flux" function). Typically, the energy of a "flux" function should be equal to a_local(u,u), if the "flux" is defined from a solution u; here a_local(.,.) denotes the element-local bilinear form represented by the integrator.
[in] | fluxelem | FiniteElement of the "flux". |
[in] | Trans | The ElementTransformation describing the physical position of the mesh element. |
[in] | flux | "Flux" coefficients representing the expansion of the "flux" function in the basis of fluxelem. |
[out] | d_energy | If not NULL, the given Vector should be set to represent directional energy split that can be used for anisotropic error estimation. |
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 1196 of file bilininteg.cpp.
|
inline |
Definition at line 2289 of file bilininteg.hpp.
|
static |
Definition at line 1272 of file bilininteg.cpp.
|
inlinevirtual |
Indicates whether this integrator can use a Ceed backend.
Reimplemented from mfem::NonlinearFormIntegrator.
Definition at line 2287 of file bilininteg.hpp.
|
protected |
Definition at line 2133 of file bilininteg.hpp.
|
protected |
Definition at line 2131 of file bilininteg.hpp.
|
protected |
Definition at line 2132 of file bilininteg.hpp.