MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
ex1p.cpp
Go to the documentation of this file.
1// MFEM Example 1 - Parallel Version
2// Caliper Modification
3//
4// Compile with: make ex1p
5//
6// Sample runs: mpirun -np 4 ex1p -m ../data/square-disc.mesh
7// mpirun -np 4 ex1p -m ../data/star.mesh
8// mpirun -np 4 ex1p -m ../data/star-mixed.mesh
9// mpirun -np 4 ex1p -m ../data/escher.mesh
10// mpirun -np 4 ex1p -m ../data/fichera.mesh
11// mpirun -np 4 ex1p -m ../data/fichera-mixed.mesh
12// mpirun -np 4 ex1p -m ../data/toroid-wedge.mesh
13// mpirun -np 4 ex1p -m ../data/periodic-annulus-sector.msh
14// mpirun -np 4 ex1p -m ../data/periodic-torus-sector.msh
15// mpirun -np 4 ex1p -m ../data/square-disc-p2.vtk -o 2
16// mpirun -np 4 ex1p -m ../data/square-disc-p3.mesh -o 3
17// mpirun -np 4 ex1p -m ../data/square-disc-nurbs.mesh -o -1
18// mpirun -np 4 ex1p -m ../data/star-mixed-p2.mesh -o 2
19// mpirun -np 4 ex1p -m ../data/disc-nurbs.mesh -o -1
20// mpirun -np 4 ex1p -m ../data/pipe-nurbs.mesh -o -1
21// mpirun -np 4 ex1p -m ../data/ball-nurbs.mesh -o 2
22// mpirun -np 4 ex1p -m ../data/fichera-mixed-p2.mesh -o 2
23// mpirun -np 4 ex1p -m ../data/star-surf.mesh
24// mpirun -np 4 ex1p -m ../data/square-disc-surf.mesh
25// mpirun -np 4 ex1p -m ../data/inline-segment.mesh
26// mpirun -np 4 ex1p -m ../data/amr-quad.mesh
27// mpirun -np 4 ex1p -m ../data/amr-hex.mesh
28// mpirun -np 4 ex1p -m ../data/mobius-strip.mesh
29// mpirun -np 4 ex1p -m ../data/mobius-strip.mesh -o -1 -sc
30//
31// Device sample runs:
32// mpirun -np 4 ex1p -pa -d cuda
33// mpirun -np 4 ex1p -pa -d occa-cuda
34// mpirun -np 4 ex1p -pa -d raja-omp
35// mpirun -np 4 ex1p -pa -d ceed-cpu
36// * mpirun -np 4 ex1p -pa -d ceed-cuda
37// mpirun -np 4 ex1p -pa -d ceed-cuda:/gpu/cuda/shared
38// mpirun -np 4 ex1p -m ../data/beam-tet.mesh -pa -d ceed-cpu
39//
40// Description: This example is a copy of Example 1 instrumented with the
41// Caliper performance profilinh library. Any option supported by
42// the Caliper ConfigManager can be passed to the code using a
43// configuration string after -p or --caliper flag. For more
44// information, see the Caliper documentation.
45//
46// Examples: mpirun -np 4 ex1p --caliper runtime-report
47// mpirun -np 4 ex1p --caliper runtime-report,mem.highwatermark,mpi-report
48//
49// The first run will return the default report. The second run will also output
50// the memory high-water mark and time spent in MPI routines.
51
52#include "mfem.hpp"
53#include <fstream>
54#include <iostream>
55
56using namespace std;
57using namespace mfem;
58
59int main(int argc, char *argv[])
60{
61 // 1. Initialize MPI and HYPRE.
62 Mpi::Init(argc, argv);
63 int num_procs = Mpi::WorldSize();
64 int myid = Mpi::WorldRank();
66 // Define Caliper ConfigManager
67 cali::ConfigManager mgr;
68 // Caliper instrumentation
69 MFEM_PERF_FUNCTION;
70
71 // 2. Parse command-line options.
72 const char *mesh_file = "../../data/star.mesh";
73 int order = 1;
74 bool static_cond = false;
75 bool pa = false;
76 const char *device_config = "cpu";
77 bool visualization = true;
78 const char* cali_config = "runtime-report";
79
80 OptionsParser args(argc, argv);
81 args.AddOption(&mesh_file, "-m", "--mesh",
82 "Mesh file to use.");
83 args.AddOption(&order, "-o", "--order",
84 "Finite element order (polynomial degree) or -1 for"
85 " isoparametric space.");
86 args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
87 "--no-static-condensation", "Enable static condensation.");
88 args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
89 "--no-partial-assembly", "Enable Partial Assembly.");
90 args.AddOption(&device_config, "-d", "--device",
91 "Device configuration string, see Device::Configure().");
92 args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
93 "--no-visualization",
94 "Enable or disable GLVis visualization.");
95 args.AddOption(&cali_config, "-p", "--caliper",
96 "Caliper configuration string.");
97 args.Parse();
98 if (!args.Good())
99 {
100 if (myid == 0)
101 {
102 args.PrintUsage(cout);
103 }
104 return 1;
105 }
106 if (myid == 0)
107 {
108 args.PrintOptions(cout);
109 }
110
111 // 3. Enable hardware devices such as GPUs, and programming models such as
112 // CUDA, OCCA, RAJA and OpenMP based on command line options.
113 Device device(device_config);
114 if (myid == 0) { device.Print(); }
115
116 // Caliper configuration
117 mgr.add(cali_config);
118 mgr.start();
119
120 // 4. Read the (serial) mesh from the given mesh file on all processors. We
121 // can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
122 // and volume meshes with the same code.
123 Mesh mesh(mesh_file, 1, 1);
124 int dim = mesh.Dimension();
125
126 // 5. Refine the serial mesh on all processors to increase the resolution. In
127 // this example we do 'ref_levels' of uniform refinement. We choose
128 // 'ref_levels' to be the largest number that gives a final mesh with no
129 // more than 10,000 elements.
130 {
131 int ref_levels =
132 (int)floor(log(10000./mesh.GetNE())/log(2.)/dim);
133 for (int l = 0; l < ref_levels; l++)
134 {
135 mesh.UniformRefinement();
136 }
137 }
138
139 // 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
140 // this mesh further in parallel to increase the resolution. Once the
141 // parallel mesh is defined, the serial mesh can be deleted.
142 ParMesh pmesh(MPI_COMM_WORLD, mesh);
143 mesh.Clear();
144 {
145 int par_ref_levels = 2;
146 for (int l = 0; l < par_ref_levels; l++)
147 {
148 pmesh.UniformRefinement();
149 }
150 }
151
152 // 7. Define a parallel finite element space on the parallel mesh. Here we
153 // use continuous Lagrange finite elements of the specified order. If
154 // order < 1, we instead use an isoparametric/isogeometric space.
156 bool delete_fec;
157 if (order > 0)
158 {
159 fec = new H1_FECollection(order, dim);
160 delete_fec = true;
161 }
162 else if (pmesh.GetNodes())
163 {
164 fec = pmesh.GetNodes()->OwnFEC();
165 delete_fec = false;
166 if (myid == 0)
167 {
168 cout << "Using isoparametric FEs: " << fec->Name() << endl;
169 }
170 }
171 else
172 {
173 fec = new H1_FECollection(order = 1, dim);
174 delete_fec = true;
175 }
176 ParFiniteElementSpace fespace(&pmesh, fec);
177 HYPRE_BigInt size = fespace.GlobalTrueVSize();
178 if (myid == 0)
179 {
180 cout << "Number of finite element unknowns: " << size << endl;
181 }
182
183 // 8. Determine the list of true (i.e. parallel conforming) essential
184 // boundary dofs. In this example, the boundary conditions are defined
185 // by marking all the boundary attributes from the mesh as essential
186 // (Dirichlet) and converting them to a list of true dofs.
187 Array<int> ess_tdof_list;
188 if (pmesh.bdr_attributes.Size())
189 {
190 Array<int> ess_bdr(pmesh.bdr_attributes.Max());
191 ess_bdr = 1;
192 fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
193 }
194
195 // 9. Set up the parallel linear form b(.) which corresponds to the
196 // right-hand side of the FEM linear system, which in this case is
197 // (1,phi_i) where phi_i are the basis functions in fespace.
198 MFEM_PERF_BEGIN("Set up the linear form");
199 ParLinearForm b(&fespace);
200 ConstantCoefficient one(1.0);
201 b.AddDomainIntegrator(new DomainLFIntegrator(one));
202 b.Assemble();
203 MFEM_PERF_END("Set up the linear form");
204
205 // 10. Define the solution vector x as a parallel finite element grid function
206 // corresponding to fespace. Initialize x with initial guess of zero,
207 // which satisfies the boundary conditions.
208 ParGridFunction x(&fespace);
209 x = 0.0;
210
211 // 11. Set up the parallel bilinear form a(.,.) on the finite element space
212 // corresponding to the Laplacian operator -Delta, by adding the Diffusion
213 // domain integrator.
214 MFEM_PERF_BEGIN("Set up the bilinear form");
215 ParBilinearForm a(&fespace);
216 if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
217 a.AddDomainIntegrator(new DiffusionIntegrator(one));
218
219 // 12. Assemble the parallel bilinear form and the corresponding linear
220 // system, applying any necessary transformations such as: parallel
221 // assembly, eliminating boundary conditions, applying conforming
222 // constraints for non-conforming AMR, static condensation, etc.
223 if (static_cond) { a.EnableStaticCondensation(); }
224 a.Assemble();
225
226 OperatorPtr A;
227 Vector B, X;
228 a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
229 MFEM_PERF_END("Set up the bilinear form");
230 // 13. Solve the linear system A X = B.
231 // * With full assembly, use the BoomerAMG preconditioner from hypre.
232 // * With partial assembly, use Jacobi smoothing, for now.
233 {
234 MFEM_PERF_SCOPE("Solve A X=B");
235 Solver *prec = NULL;
236 if (pa)
237 {
238 if (UsesTensorBasis(fespace))
239 {
240 prec = new OperatorJacobiSmoother(a, ess_tdof_list);
241 }
242 }
243 else
244 {
245 prec = new HypreBoomerAMG;
246 }
247 CGSolver cg(MPI_COMM_WORLD);
248 cg.SetRelTol(1e-12);
249 cg.SetMaxIter(2000);
250 cg.SetPrintLevel(1);
251 if (prec) { cg.SetPreconditioner(*prec); }
252 cg.SetOperator(*A);
253 cg.Mult(B, X);
254 delete prec;
255 }
256 // 14. Recover the parallel grid function corresponding to X. This is the
257 // local finite element solution on each processor.
258 a.RecoverFEMSolution(X, b, x);
259
260 // 15. Save the refined mesh and the solution in parallel. This output can
261 // be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
262 MFEM_PERF_BEGIN("Save the results");
263 {
264 ostringstream mesh_name, sol_name;
265 mesh_name << "mesh." << setfill('0') << setw(6) << myid;
266 sol_name << "sol." << setfill('0') << setw(6) << myid;
267
268 ofstream mesh_ofs(mesh_name.str().c_str());
269 mesh_ofs.precision(8);
270 pmesh.Print(mesh_ofs);
271
272 ofstream sol_ofs(sol_name.str().c_str());
273 sol_ofs.precision(8);
274 x.Save(sol_ofs);
275 }
276 MFEM_PERF_END("Save the results");
277 // 16. Send the solution by socket to a GLVis server.
278 if (visualization)
279 {
280 char vishost[] = "localhost";
281 int visport = 19916;
282 socketstream sol_sock(vishost, visport);
283 sol_sock << "parallel " << num_procs << " " << myid << "\n";
284 sol_sock.precision(8);
285 sol_sock << "solution\n" << pmesh << x << flush;
286 }
287
288 // 17. Free the used memory.
289 if (delete_fec)
290 {
291 delete fec;
292 }
293 // Flush output before MPI_finalize
294 mgr.flush();
295
296 return 0;
297}
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
Definition array.cpp:68
int Size() const
Return the logical size of the array.
Definition array.hpp:144
Conjugate gradient method.
Definition solvers.hpp:513
virtual void SetOperator(const Operator &op)
Also calls SetOperator for the preconditioner if there is one.
Definition solvers.hpp:526
virtual void Mult(const Vector &b, Vector &x) const
Iterative solution of the linear system using the Conjugate Gradient method.
Definition solvers.cpp:718
A coefficient that is constant across space and time.
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
Definition device.hpp:123
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
Definition device.cpp:286
Class for domain integration .
Definition lininteg.hpp:109
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
Definition fe_coll.hpp:27
virtual const char * Name() const
Definition fe_coll.hpp:79
Arbitrary order H1-conforming (continuous) finite elements.
Definition fe_coll.hpp:260
The BoomerAMG solver in hypre.
Definition hypre.hpp:1691
static void Init()
Initialize hypre by calling HYPRE_Init() and set default options. After calling Hypre::Init(),...
Definition hypre.hpp:74
void SetRelTol(real_t rtol)
Definition solvers.hpp:209
virtual void SetPreconditioner(Solver &pr)
This should be called before SetOperator.
Definition solvers.cpp:173
virtual void SetPrintLevel(int print_lvl)
Legacy method to set the level of verbosity of the solver output.
Definition solvers.cpp:71
void SetMaxIter(int max_it)
Definition solvers.hpp:211
Mesh data type.
Definition mesh.hpp:56
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
Definition mesh.hpp:282
void Clear()
Clear the contents of the Mesh.
Definition mesh.hpp:730
int GetNE() const
Returns number of elements.
Definition mesh.hpp:1226
int Dimension() const
Dimension of the reference space used within the elements.
Definition mesh.hpp:1160
void GetNodes(Vector &node_coord) const
Definition mesh.cpp:8973
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
Definition mesh.cpp:10970
static int WorldRank()
Return the MPI rank in MPI_COMM_WORLD.
static int WorldSize()
Return the size of MPI_COMM_WORLD.
static void Init(int &argc, char **&argv, int required=default_thread_required, int *provided=nullptr)
Singleton creation with Mpi::Init(argc, argv).
Pointer to an Operator of a specified type.
Definition handle.hpp:34
Jacobi smoothing for a given bilinear form (no matrix necessary).
Definition solvers.hpp:313
virtual void RecoverFEMSolution(const Vector &X, const Vector &b, Vector &x)
Reconstruct a solution vector x (e.g. a GridFunction) from the solution X of a constrained linear sys...
Definition operator.cpp:148
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
void PrintUsage(std::ostream &out) const
Print the usage message.
void PrintOptions(std::ostream &out) const
Print the options.
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
Definition optparser.hpp:82
bool Good() const
Return true if the command line options were parsed successfully.
Class for parallel bilinear form.
Abstract parallel finite element space.
Definition pfespace.hpp:29
void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1) const override
HYPRE_BigInt GlobalTrueVSize() const
Definition pfespace.hpp:285
Class for parallel grid function.
Definition pgridfunc.hpp:33
void Save(std::ostream &out) const override
Class for parallel linear form.
Class for parallel meshes.
Definition pmesh.hpp:34
void Print(std::ostream &out=mfem::out, const std::string &comments="") const override
Definition pmesh.cpp:4801
Base class for solvers.
Definition operator.hpp:683
Vector data type.
Definition vector.hpp:80
int dim
Definition ex24.cpp:53
int main()
HYPRE_Int HYPRE_BigInt
real_t b
Definition lissajous.cpp:42
real_t a
Definition lissajous.cpp:41
const int visport
bool UsesTensorBasis(const FiniteElementSpace &fes)
Return true if the mesh contains only one topology and the elements are tensor elements.
Definition fespace.hpp:1345
const char vishost[]