63int main(
int argc, 
char *argv[])
 
   66   cali::ConfigManager mgr;
 
   71   const char *mesh_file = 
"../../data/star.mesh";
 
   73   bool static_cond = 
false;
 
   75   const char *device_config = 
"cpu";
 
   76   bool visualization = 
true;
 
   77   const char* cali_config = 
"runtime-report";
 
   80   args.
AddOption(&mesh_file, 
"-m", 
"--mesh",
 
   83                  "Finite element order (polynomial degree) or -1 for" 
   84                  " isoparametric space.");
 
   85   args.
AddOption(&static_cond, 
"-sc", 
"--static-condensation", 
"-no-sc",
 
   86                  "--no-static-condensation", 
"Enable static condensation.");
 
   87   args.
AddOption(&pa, 
"-pa", 
"--partial-assembly", 
"-no-pa",
 
   88                  "--no-partial-assembly", 
"Enable Partial Assembly.");
 
   89   args.
AddOption(&device_config, 
"-d", 
"--device",
 
   90                  "Device configuration string, see Device::Configure().");
 
   91   args.
AddOption(&visualization, 
"-vis", 
"--visualization", 
"-no-vis",
 
   93                  "Enable or disable GLVis visualization.");
 
   94   args.
AddOption(&cali_config, 
"-p", 
"--caliper",
 
   95                  "Caliper configuration string.");
 
  107   Device device(device_config);
 
  111   mgr.add(cali_config);
 
  117   Mesh mesh(mesh_file, 1, 1);
 
  126         (int)floor(log(50000./mesh.
GetNE())/log(2.)/
dim);
 
  127      for (
int l = 0; l < ref_levels; l++)
 
  147      cout << 
"Using isoparametric FEs: " << fec->
Name() << endl;
 
  155   cout << 
"Number of finite element unknowns: " 
  173   MFEM_PERF_BEGIN(
"Set up the linear form");
 
  178   MFEM_PERF_END(
"Set up the linear form");
 
  189   MFEM_PERF_BEGIN(
"Set up the bilinear form");
 
  191   if (pa) { 
a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
 
  198   if (static_cond) { 
a.EnableStaticCondensation(); }
 
  203   a.FormLinearSystem(ess_tdof_list, x, 
b, A, X, B);
 
  204   MFEM_PERF_END(
"Set up the bilinear form");
 
  206   cout << 
"Size of linear system: " << A->
Height() << endl;
 
  211      MFEM_PERF_SCOPE(
"Solve A X=B (FA)");
 
  212#ifndef MFEM_USE_SUITESPARSE 
  215      PCG(*A, M, B, X, 1, 200, 1e-12, 0.0);
 
  219      umf_solver.
Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
 
  221      umf_solver.
Mult(B, X);
 
  226      MFEM_PERF_SCOPE(
"Solve A X=B (PA)");
 
  230         PCG(*A, M, B, X, 1, 400, 1e-12, 0.0);
 
  234         CG(*A, B, X, 1, 400, 1e-12, 0.0);
 
  238   a.RecoverFEMSolution(X, 
b, x);
 
  242   MFEM_PERF_BEGIN(
"Save the results");
 
  243   ofstream mesh_ofs(
"refined.mesh");
 
  244   mesh_ofs.precision(8);
 
  245   mesh.
Print(mesh_ofs);
 
  246   ofstream sol_ofs(
"sol.gf");
 
  247   sol_ofs.precision(8);
 
  249   MFEM_PERF_END(
"Save the results");
 
  256      sol_sock.precision(8);
 
  257      sol_sock << 
"solution\n" << mesh << x << flush;
 
 
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
 
int Size() const
Return the logical size of the array.
 
A coefficient that is constant across space and time.
 
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
 
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
 
Class for domain integration .
 
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
 
virtual const char * Name() const
 
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
 
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
 
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1) const
Get a list of essential true dofs, ess_tdof_list, corresponding to the boundary attributes marked in ...
 
Data type for Gauss-Seidel smoother of sparse matrix.
 
Class for grid function - Vector with associated FE space.
 
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
 
Arbitrary order H1-conforming (continuous) finite elements.
 
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
 
virtual void Print(std::ostream &os=mfem::out, const std::string &comments="") const
 
int GetNE() const
Returns number of elements.
 
int Dimension() const
Dimension of the reference space used within the elements.
 
void GetNodes(Vector &node_coord) const
 
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
 
Pointer to an Operator of a specified type.
 
Jacobi smoothing for a given bilinear form (no matrix necessary).
 
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
 
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
 
void PrintUsage(std::ostream &out) const
Print the usage message.
 
void PrintOptions(std::ostream &out) const
Print the options.
 
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
 
bool Good() const
Return true if the command line options were parsed successfully.
 
Direct sparse solver using UMFPACK.
 
real_t Control[UMFPACK_CONTROL]
 
void SetOperator(const Operator &op) override
Factorize the given Operator op which must be a SparseMatrix.
 
void Mult(const Vector &b, Vector &x) const override
Direct solution of the linear system using UMFPACK.
 
void PCG(const Operator &A, Solver &B, const Vector &b, Vector &x, int print_iter, int max_num_iter, real_t RTOLERANCE, real_t ATOLERANCE)
Preconditioned conjugate gradient method. (tolerances are squared)
 
void CG(const Operator &A, const Vector &b, Vector &x, int print_iter, int max_num_iter, real_t RTOLERANCE, real_t ATOLERANCE)
Conjugate gradient method. (tolerances are squared)
 
bool UsesTensorBasis(const FiniteElementSpace &fes)
Return true if the mesh contains only one topology and the elements are tensor elements.