MFEM v4.8.0
Finite element discretization library
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
ex1.cpp
Go to the documentation of this file.
1// MFEM Example 1
2// AmgX Modification
3//
4// Compile with: make ex1
5//
6// AmgX sample runs:
7// ex1
8// ex1 -d cuda
9// ex1 --amgx-file multi_gs.json --amgx-solver
10// ex1 --amgx-file precon.json --amgx-preconditioner
11// ex1 --amgx-file multi_gs.json --amgx-solver -d cuda
12// ex1 --amgx-file precon.json --amgx-preconditioner -d cuda
13//
14// Description: This example code demonstrates the use of MFEM to define a
15// simple finite element discretization of the Poisson problem
16// -Delta u = 1 with homogeneous Dirichlet boundary conditions.
17// Specifically, we discretize using a FE space of the specified
18// order, or if order < 1 using an isoparametric/isogeometric
19// space (i.e. quadratic for quadratic curvilinear mesh, NURBS for
20// NURBS mesh, etc.)
21//
22// The example highlights the use of mesh refinement, finite
23// element grid functions, as well as linear and bilinear forms
24// corresponding to the left-hand side and right-hand side of the
25// discrete linear system. We also cover the explicit elimination
26// of essential boundary conditions, static condensation, and the
27// optional connection to the GLVis tool for visualization.
28
29#include "mfem.hpp"
30#include <fstream>
31#include <iostream>
32
33#ifndef MFEM_USE_AMGX
34#error This example requires that MFEM is built with MFEM_USE_AMGX=YES
35#endif
36
37using namespace std;
38using namespace mfem;
39
40int main(int argc, char *argv[])
41{
42 // 1. Parse command-line options.
43 const char *mesh_file = "../../data/star.mesh";
44 int order = 1;
45 bool static_cond = false;
46 bool pa = false;
47 const char *device_config = "cpu";
48 bool visualization = true;
49 bool amgx_lib = true;
50 bool amgx_solver = true;
51 const char* amgx_json_file = ""; // JSON file for AmgX
52
53 OptionsParser args(argc, argv);
54 args.AddOption(&mesh_file, "-m", "--mesh",
55 "Mesh file to use.");
56 args.AddOption(&order, "-o", "--order",
57 "Finite element order (polynomial degree) or -1 for"
58 " isoparametric space.");
59 args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
60 "--no-static-condensation", "Enable static condensation.");
61 args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
62 "--no-partial-assembly", "Enable Partial Assembly.");
63 args.AddOption(&amgx_lib, "-amgx", "--amgx-lib", "-no-amgx",
64 "--no-amgx-lib", "Use AmgX in example.");
65 args.AddOption(&amgx_json_file, "--amgx-file", "--amgx-file",
66 "AMGX solver config file (overrides --amgx-solver, --amgx-verbose)");
67 args.AddOption(&amgx_solver, "--amgx-solver", "--amgx-solver",
68 "--amgx-preconditioner", "--amgx-preconditioner",
69 "Configure AMGX as solver or preconditioner.");
70 args.AddOption(&device_config, "-d", "--device",
71 "Device configuration string, see Device::Configure().");
72 args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
73 "--no-visualization",
74 "Enable or disable GLVis visualization.");
75 args.Parse();
76 if (!args.Good())
77 {
78 args.PrintUsage(cout);
79 return 1;
80 }
81 args.PrintOptions(cout);
82
83 // 2. Enable hardware devices such as GPUs, and programming models such as
84 // CUDA, OCCA, RAJA and OpenMP based on command line options.
85 Device device(device_config);
86 device.Print();
87
88 // 3. Read the mesh from the given mesh file. We can handle triangular,
89 // quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
90 // the same code.
91 Mesh mesh(mesh_file, 1, 1);
92 int dim = mesh.Dimension();
93
94 // 4. Refine the mesh to increase the resolution. In this example we do
95 // 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
96 // largest number that gives a final mesh with no more than 50,000
97 // elements.
98 {
99 int ref_levels =
100 (int)floor(log(50000./mesh.GetNE())/log(2.)/dim);
101 for (int l = 0; l < ref_levels; l++)
102 {
103 mesh.UniformRefinement();
104 }
105 }
106
107 // 5. Define a finite element space on the mesh. Here we use continuous
108 // Lagrange finite elements of the specified order. If order < 1, we
109 // instead use an isoparametric/isogeometric space.
111 bool delete_fec;
112 if (order > 0)
113 {
114 fec = new H1_FECollection(order, dim);
115 delete_fec = true;
116 }
117 else if (mesh.GetNodes())
118 {
119 fec = mesh.GetNodes()->OwnFEC();
120 delete_fec = false;
121 cout << "Using isoparametric FEs: " << fec->Name() << endl;
122 }
123 else
124 {
125 fec = new H1_FECollection(order = 1, dim);
126 delete_fec = true;
127 }
128 FiniteElementSpace fespace(&mesh, fec);
129 cout << "Number of finite element unknowns: "
130 << fespace.GetTrueVSize() << endl;
131
132 // 6. Determine the list of true (i.e. conforming) essential boundary dofs.
133 // In this example, the boundary conditions are defined by marking all
134 // the boundary attributes from the mesh as essential (Dirichlet) and
135 // converting them to a list of true dofs.
136 Array<int> ess_tdof_list;
137 if (mesh.bdr_attributes.Size())
138 {
139 Array<int> ess_bdr(mesh.bdr_attributes.Max());
140 ess_bdr = 1;
141 fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
142 }
143
144 // 7. Set up the linear form b(.) which corresponds to the right-hand side of
145 // the FEM linear system, which in this case is (1,phi_i) where phi_i are
146 // the basis functions in the finite element fespace.
147 LinearForm b(&fespace);
148 ConstantCoefficient one(1.0);
149 b.AddDomainIntegrator(new DomainLFIntegrator(one));
150 b.Assemble();
151
152 // 8. Define the solution vector x as a finite element grid function
153 // corresponding to fespace. Initialize x with initial guess of zero,
154 // which satisfies the boundary conditions.
155 GridFunction x(&fespace);
156 x = 0.0;
157
158 // 9. Set up the bilinear form a(.,.) on the finite element space
159 // corresponding to the Laplacian operator -Delta, by adding the Diffusion
160 // domain integrator.
161 BilinearForm a(&fespace);
162 if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
163 a.AddDomainIntegrator(new DiffusionIntegrator(one));
164
165 // 10. Assemble the bilinear form and the corresponding linear system,
166 // applying any necessary transformations such as: eliminating boundary
167 // conditions, applying conforming constraints for non-conforming AMR,
168 // static condensation, etc.
169 if (static_cond) { a.EnableStaticCondensation(); }
170 a.Assemble();
171
172 OperatorPtr A;
173 Vector B, X;
174 a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
175
176 cout << "Size of linear system: " << A->Height() << endl;
177
178 // 11. Solve the linear system A X = B.
179 if (pa)
180 {
181 // Jacobi preconditioning in partial assembly mode
182 if (UsesTensorBasis(fespace))
183 {
184 OperatorJacobiSmoother M(a, ess_tdof_list);
185 PCG(*A, M, B, X, 1, 400, 1e-12, 0.0);
186 }
187 else
188 {
189 CG(*A, B, X, 1, 400, 1e-12, 0.0);
190 }
191 }
192 else if (amgx_lib && strcmp(amgx_json_file,"") == 0)
193 {
194 bool amgx_verbose = false;
195 AmgXSolver amgx(AmgXSolver::PRECONDITIONER, amgx_verbose);
196 amgx.SetOperator(*A.As<SparseMatrix>());
197 PCG(*A, amgx, B, X, 1, 200, 1e-12, 0.0);
198 }
199 else if (amgx_lib && strcmp(amgx_json_file,"") != 0)
200 {
201 AmgXSolver amgx;
202 amgx.ReadParameters(amgx_json_file, AmgXSolver::EXTERNAL);
203 amgx.InitSerial();
204 amgx.SetOperator(*A.As<SparseMatrix>());
205
206 if (amgx_solver)
207 {
208 amgx.SetConvergenceCheck(true);
209 amgx.Mult(B,X);
210 }
211 else
212 {
213 // Omit convergence check at the AmgX level when using as a
214 // preconditioner.
215 amgx.SetConvergenceCheck(false);
216 PCG(*A.As<SparseMatrix>(), amgx, B, X, 3, 40, 1e-12, 0.0);
217 }
218 }
219 else
220 {
221#ifndef MFEM_USE_SUITESPARSE
222 // Use a simple symmetric Gauss-Seidel preconditioner with PCG.
223 GSSmoother M((SparseMatrix&)(*A));
224 PCG(*A, M, B, X, 1, 200, 1e-12, 0.0);
225#else
226 // If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
227 UMFPackSolver umf_solver;
228 umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
229 umf_solver.SetOperator(*A);
230 umf_solver.Mult(B, X);
231#endif
232 }
233
234 // 12. Recover the solution as a finite element grid function.
235 a.RecoverFEMSolution(X, b, x);
236
237 // 13. Save the refined mesh and the solution. This output can be viewed later
238 // using GLVis: "glvis -m refined.mesh -g sol.gf".
239 ofstream mesh_ofs("refined.mesh");
240 mesh_ofs.precision(8);
241 mesh.Print(mesh_ofs);
242 ofstream sol_ofs("sol.gf");
243 sol_ofs.precision(8);
244 x.Save(sol_ofs);
245
246 // 14. Send the solution by socket to a GLVis server.
247 if (visualization)
248 {
249 char vishost[] = "localhost";
250 int visport = 19916;
251 socketstream sol_sock(vishost, visport);
252 sol_sock.precision(8);
253 sol_sock << "solution\n" << mesh << x << flush;
254 }
255
256 // 15. Free the used memory.
257 if (delete_fec)
258 {
259 delete fec;
260 }
261
262 return 0;
263}
MFEM wrapper for Nvidia's multigrid library, AmgX (github.com/NVIDIA/AMGX)
@ EXTERNAL
Configure will be read from a specified file.
void InitSerial()
Initialize the AmgX library for serial execution once the solver configuration has been established t...
void SetConvergenceCheck(bool setConvergenceCheck_=true)
Add a check for convergence after applying Mult.
void ReadParameters(const std::string config, CONFIG_SRC source)
Read in the AmgX parameters either through a file or directly through a properly formated string....
void Mult(const Vector &b, Vector &x) const override
Utilize the AmgX library to solve the linear system where the "matrix" is the AMG approximation to th...
void SetOperator(const Operator &op) override
Sets the Operator that is going to be solved via AmgX. Supports operators based on either an MFEM Spa...
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
Definition array.cpp:68
int Size() const
Return the logical size of the array.
Definition array.hpp:147
A "square matrix" operator for the associated FE space and BLFIntegrators The sum of all the BLFInteg...
A coefficient that is constant across space and time.
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
Definition device.hpp:123
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
Definition device.cpp:297
Class for domain integration .
Definition lininteg.hpp:106
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
Definition fe_coll.hpp:27
virtual const char * Name() const
Definition fe_coll.hpp:79
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
Definition fespace.hpp:244
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
Definition fespace.hpp:851
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1) const
Get a list of essential true dofs, ess_tdof_list, corresponding to the boundary attributes marked in ...
Definition fespace.cpp:658
Data type for Gauss-Seidel smoother of sparse matrix.
Class for grid function - Vector with associated FE space.
Definition gridfunc.hpp:31
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
Arbitrary order H1-conforming (continuous) finite elements.
Definition fe_coll.hpp:275
Vector with associated FE space and LinearFormIntegrators.
Mesh data type.
Definition mesh.hpp:64
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
Definition mesh.hpp:290
virtual void Print(std::ostream &os=mfem::out, const std::string &comments="") const
Definition mesh.hpp:2433
int GetNE() const
Returns number of elements.
Definition mesh.hpp:1282
int Dimension() const
Dimension of the reference space used within the elements.
Definition mesh.hpp:1216
void GetNodes(Vector &node_coord) const
Definition mesh.cpp:9294
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
Definition mesh.cpp:11295
Pointer to an Operator of a specified type.
Definition handle.hpp:34
OpType * As() const
Return the Operator pointer statically cast to a specified OpType. Similar to the method Get().
Definition handle.hpp:104
Jacobi smoothing for a given bilinear form (no matrix necessary).
Definition solvers.hpp:333
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
Definition operator.hpp:66
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
void PrintUsage(std::ostream &out) const
Print the usage message.
void PrintOptions(std::ostream &out) const
Print the options.
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
Definition optparser.hpp:82
bool Good() const
Return true if the command line options were parsed successfully.
Data type sparse matrix.
Definition sparsemat.hpp:51
Direct sparse solver using UMFPACK.
Definition solvers.hpp:1121
real_t Control[UMFPACK_CONTROL]
Definition solvers.hpp:1131
void SetOperator(const Operator &op) override
Factorize the given Operator op which must be a SparseMatrix.
Definition solvers.cpp:3218
void Mult(const Vector &b, Vector &x) const override
Direct solution of the linear system using UMFPACK.
Definition solvers.cpp:3313
Vector data type.
Definition vector.hpp:82
int dim
Definition ex24.cpp:53
int main()
real_t b
Definition lissajous.cpp:42
real_t a
Definition lissajous.cpp:41
void PCG(const Operator &A, Solver &B, const Vector &b, Vector &x, int print_iter, int max_num_iter, real_t RTOLERANCE, real_t ATOLERANCE)
Preconditioned conjugate gradient method. (tolerances are squared)
Definition solvers.cpp:949
void CG(const Operator &A, const Vector &b, Vector &x, int print_iter, int max_num_iter, real_t RTOLERANCE, real_t ATOLERANCE)
Conjugate gradient method. (tolerances are squared)
Definition solvers.cpp:934
bool UsesTensorBasis(const FiniteElementSpace &fes)
Return true if the mesh contains only one topology and the elements are tensor elements.
Definition fespace.hpp:1555
const char vishost[]