MFEM v4.7.0
Finite element discretization library
|
Integrator defining a sum of multiple Integrators. More...
#include <bilininteg.hpp>
Public Member Functions | |
SumIntegrator (int own_integs=1) | |
virtual void | SetIntRule (const IntegrationRule *ir) |
Prescribe a fixed IntegrationRule to use (when ir != NULL) or let the integrator choose (when ir == NULL). | |
void | AddIntegrator (BilinearFormIntegrator *integ) |
virtual void | AssembleElementMatrix (const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat) |
Given a particular Finite Element computes the element matrix elmat. | |
virtual void | AssembleElementMatrix2 (const FiniteElement &trial_fe, const FiniteElement &test_fe, ElementTransformation &Trans, DenseMatrix &elmat) |
virtual void | AssembleFaceMatrix (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
virtual void | AssembleFaceMatrix (const FiniteElement &trial_face_fe, const FiniteElement &test_fe1, const FiniteElement &test_fe2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
virtual void | AssemblePA (const FiniteElementSpace &fes) |
Method defining partial assembly. | |
virtual void | AssembleDiagonalPA (Vector &diag) |
Assemble diagonal and add it to Vector diag. | |
virtual void | AssemblePAInteriorFaces (const FiniteElementSpace &fes) |
virtual void | AssemblePABoundaryFaces (const FiniteElementSpace &fes) |
virtual void | AddMultTransposePA (const Vector &x, Vector &y) const |
Method for partially assembled transposed action. | |
virtual void | AddMultPA (const Vector &x, Vector &y) const |
Method for partially assembled action. | |
virtual void | AssembleMF (const FiniteElementSpace &fes) |
Method defining matrix-free assembly. | |
virtual void | AddMultMF (const Vector &x, Vector &y) const |
virtual void | AddMultTransposeMF (const Vector &x, Vector &y) const |
virtual void | AssembleDiagonalMF (Vector &diag) |
Assemble diagonal and add it to Vector diag. | |
virtual void | AssembleEA (const FiniteElementSpace &fes, Vector &emat, const bool add) |
Method defining element assembly. | |
virtual void | AssembleEAInteriorFaces (const FiniteElementSpace &fes, Vector &ea_data_int, Vector &ea_data_ext, const bool add) |
virtual void | AssembleEABoundaryFaces (const FiniteElementSpace &fes, Vector &ea_data_bdr, const bool add) |
virtual | ~SumIntegrator () |
virtual void | AssemblePA (const FiniteElementSpace &trial_fes, const FiniteElementSpace &test_fes) |
Public Member Functions inherited from mfem::BilinearFormIntegrator | |
virtual void | AssembleNURBSPA (const FiniteElementSpace &fes) |
Method defining partial assembly on NURBS patches. | |
virtual void | AssemblePABoundary (const FiniteElementSpace &fes) |
virtual void | AssembleDiagonalPA_ADAt (const Vector &D, Vector &diag) |
Assemble diagonal of \(A D A^T\) ( \(A\) is this integrator) and add it to diag. | |
virtual void | AddMultNURBSPA (const Vector &x, Vector &y) const |
Method for partially assembled action on NURBS patches. | |
virtual void | AssemblePatchMatrix (const int patch, const FiniteElementSpace &fes, SparseMatrix *&smat) |
virtual void | AssembleTraceFaceMatrix (int elem, const FiniteElement &trial_face_fe, const FiniteElement &test_fe, FaceElementTransformations &Trans, DenseMatrix &elmat) |
virtual void | AssembleElementVector (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, Vector &elvect) |
Perform the local action of the BilinearFormIntegrator. Note that the default implementation in the base class is general but not efficient. | |
virtual void | AssembleFaceVector (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, Vector &elvect) |
Perform the local action of the BilinearFormIntegrator resulting from a face integral term. Note that the default implementation in the base class is general but not efficient. | |
virtual void | AssembleElementGrad (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, DenseMatrix &elmat) |
Assemble the local gradient matrix. | |
virtual void | AssembleFaceGrad (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, DenseMatrix &elmat) |
Assemble the local action of the gradient of the NonlinearFormIntegrator resulting from a face integral term. | |
virtual void | ComputeElementFlux (const FiniteElement &el, ElementTransformation &Trans, Vector &u, const FiniteElement &fluxelem, Vector &flux, bool with_coef=true, const IntegrationRule *ir=NULL) |
Virtual method required for Zienkiewicz-Zhu type error estimators. | |
virtual real_t | ComputeFluxEnergy (const FiniteElement &fluxelem, ElementTransformation &Trans, Vector &flux, Vector *d_energy=NULL) |
Virtual method required for Zienkiewicz-Zhu type error estimators. | |
virtual bool | RequiresFaceNormalDerivatives () const |
For bilinear forms on element faces, specifies if the normal derivatives are needed on the faces or just the face restriction. | |
virtual void | AddMultPAFaceNormalDerivatives (const Vector &x, const Vector &dxdn, Vector &y, Vector &dydn) const |
Method for partially assembled action. | |
virtual | ~BilinearFormIntegrator () |
Public Member Functions inherited from mfem::NonlinearFormIntegrator | |
void | SetIntegrationMode (Mode m) |
void | SetNURBSPatchIntRule (NURBSMeshRules *pr) |
For patchwise integration, SetNURBSPatchIntRule must be called. | |
bool | HasNURBSPatchIntRule () const |
bool | Patchwise () const |
void | SetIntegrationRule (const IntegrationRule &ir) |
Prescribe a fixed IntegrationRule to use. | |
void | SetPAMemoryType (MemoryType mt) |
const IntegrationRule * | GetIntegrationRule () const |
Get the integration rule of the integrator (possibly NULL). | |
virtual real_t | GetElementEnergy (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun) |
Compute the local energy. | |
virtual void | AssembleGradPA (const Vector &x, const FiniteElementSpace &fes) |
Prepare the integrator for partial assembly (PA) gradient evaluations on the given FE space fes at the state x. | |
virtual real_t | GetLocalStateEnergyPA (const Vector &x) const |
Compute the local (to the MPI rank) energy with partial assembly. | |
virtual void | AddMultGradPA (const Vector &x, Vector &y) const |
Method for partially assembled gradient action. | |
virtual void | AssembleGradDiagonalPA (Vector &diag) const |
Method for computing the diagonal of the gradient with partial assembly. | |
virtual bool | SupportsCeed () const |
Indicates whether this integrator can use a Ceed backend. | |
ceed::Operator & | GetCeedOp () |
virtual | ~NonlinearFormIntegrator () |
Additional Inherited Members | |
Public Types inherited from mfem::NonlinearFormIntegrator | |
enum | Mode { ELEMENTWISE = 0 , PATCHWISE = 1 , PATCHWISE_REDUCED = 2 } |
Protected Member Functions inherited from mfem::BilinearFormIntegrator | |
BilinearFormIntegrator (const IntegrationRule *ir=NULL) | |
Protected Member Functions inherited from mfem::NonlinearFormIntegrator | |
NonlinearFormIntegrator (const IntegrationRule *ir=NULL) | |
Protected Attributes inherited from mfem::NonlinearFormIntegrator | |
const IntegrationRule * | IntRule |
Mode | integrationMode = Mode::ELEMENTWISE |
NURBSMeshRules * | patchRules = nullptr |
ceed::Operator * | ceedOp |
MemoryType | pa_mt = MemoryType::DEFAULT |
Integrator defining a sum of multiple Integrators.
Definition at line 422 of file bilininteg.hpp.
|
inline |
Definition at line 430 of file bilininteg.hpp.
|
virtual |
Definition at line 453 of file bilininteg.cpp.
|
inline |
Definition at line 434 of file bilininteg.hpp.
Perform the action of integrator on the input x and add the result to the output y. Both x and y are E-vectors, i.e. they represent the element-wise discontinuous version of the FE space.
This method can be called only after the method AssembleMF() has been called.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 399 of file bilininteg.cpp.
Method for partially assembled action.
Perform the action of integrator on the input x and add the result to the output y. Both x and y are E-vectors, i.e. they represent the element-wise discontinuous version of the FE space.
This method can be called only after the method AssemblePA() has been called.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 375 of file bilininteg.cpp.
Perform the transpose action of integrator on the input x and add the result to the output y. Both x and y are E-vectors, i.e. they represent the element-wise discontinuous version of the FE space.
This method can be called only after the method AssemblePA() has been called.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 407 of file bilininteg.cpp.
Method for partially assembled transposed action.
Perform the transpose action of integrator on the input x and add the result to the output y. Both x and y are E-vectors, i.e. they represent the element-wise discontinuous version of the FE space.
This method can be called only after the method AssemblePA() has been called.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 383 of file bilininteg.cpp.
|
virtual |
Assemble diagonal and add it to Vector diag.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 415 of file bilininteg.cpp.
|
virtual |
Assemble diagonal and add it to Vector diag.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 351 of file bilininteg.cpp.
|
virtual |
Method defining element assembly.
The result of the element assembly is added to the emat Vector if add is true. Otherwise, if add is false, we set emat.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 423 of file bilininteg.cpp.
|
virtual |
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 443 of file bilininteg.cpp.
|
virtual |
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 432 of file bilininteg.cpp.
|
virtual |
Given a particular Finite Element computes the element matrix elmat.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 287 of file bilininteg.cpp.
|
virtual |
Compute the local matrix representation of a bilinear form \(a(u,v)\) defined on different trial (given by \(u\)) and test (given by \(v\)) spaces. The rows in the local matrix correspond to the test dofs and the columns – to the trial dofs.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 300 of file bilininteg.cpp.
|
virtual |
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 314 of file bilininteg.cpp.
|
virtual |
Abstract method used for assembling TraceFaceIntegrators in a MixedBilinearForm.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 328 of file bilininteg.cpp.
|
virtual |
Method defining matrix-free assembly.
Used with BilinearFormIntegrators that have different spaces. The result of fully matrix-free assembly is stored internally so that it can be used later in the methods AddMultMF() and AddMultTransposeMF().
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 391 of file bilininteg.cpp.
|
virtual |
Method defining partial assembly.
The result of the partial assembly is stored internally so that it can be used later in the methods AddMultPA() and AddMultTransposePA().
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 343 of file bilininteg.cpp.
|
virtual |
Used with BilinearFormIntegrators that have different spaces.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 50 of file bilininteg.cpp.
|
virtual |
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 367 of file bilininteg.cpp.
|
virtual |
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 359 of file bilininteg.cpp.
|
virtual |
Prescribe a fixed IntegrationRule to use (when ir != NULL) or let the integrator choose (when ir == NULL).
Reimplemented from mfem::NonlinearFormIntegrator.
Definition at line 278 of file bilininteg.cpp.