|
| DGTraceIntegrator (VectorCoefficient &u_, real_t a) |
| Construct integrator with \(\rho = 1\), \(\beta = \alpha/2\).
|
|
| DGTraceIntegrator (VectorCoefficient &u_, real_t a, real_t b) |
| Construct integrator with \(\rho = 1\).
|
|
| DGTraceIntegrator (Coefficient &rho_, VectorCoefficient &u_, real_t a, real_t b) |
|
virtual void | AssembleFaceMatrix (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssemblePAInteriorFaces (const FiniteElementSpace &fes) |
|
virtual void | AssemblePABoundaryFaces (const FiniteElementSpace &fes) |
|
virtual void | AddMultTransposePA (const Vector &x, Vector &y) const |
| Method for partially assembled transposed action.
|
|
virtual void | AddMultPA (const Vector &, Vector &) const |
| Method for partially assembled action.
|
|
virtual void | AssembleEAInteriorFaces (const FiniteElementSpace &fes, Vector &ea_data_int, Vector &ea_data_ext, const bool add) |
|
virtual void | AssembleEABoundaryFaces (const FiniteElementSpace &fes, Vector &ea_data_bdr, const bool add) |
|
virtual void | AssembleFaceMatrix (const FiniteElement &trial_face_fe, const FiniteElement &test_fe1, const FiniteElement &test_fe2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssemblePA (const FiniteElementSpace &fes) |
| Method defining partial assembly.
|
|
virtual void | AssemblePA (const FiniteElementSpace &trial_fes, const FiniteElementSpace &test_fes) |
|
virtual void | AssembleNURBSPA (const FiniteElementSpace &fes) |
| Method defining partial assembly on NURBS patches.
|
|
virtual void | AssemblePABoundary (const FiniteElementSpace &fes) |
|
virtual void | AssembleDiagonalPA (Vector &diag) |
| Assemble diagonal and add it to Vector diag.
|
|
virtual void | AssembleDiagonalPA_ADAt (const Vector &D, Vector &diag) |
| Assemble diagonal of \(A D A^T\) ( \(A\) is this integrator) and add it to diag.
|
|
virtual void | AddMultNURBSPA (const Vector &x, Vector &y) const |
| Method for partially assembled action on NURBS patches.
|
|
virtual void | AssembleEA (const FiniteElementSpace &fes, Vector &emat, const bool add=true) |
| Method defining element assembly.
|
|
virtual void | AssembleMF (const FiniteElementSpace &fes) |
| Method defining matrix-free assembly.
|
|
virtual void | AddMultMF (const Vector &x, Vector &y) const |
|
virtual void | AddMultTransposeMF (const Vector &x, Vector &y) const |
|
virtual void | AssembleDiagonalMF (Vector &diag) |
| Assemble diagonal and add it to Vector diag.
|
|
virtual void | AssembleElementMatrix (const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat) |
| Given a particular Finite Element computes the element matrix elmat.
|
|
virtual void | AssembleElementMatrix2 (const FiniteElement &trial_fe, const FiniteElement &test_fe, ElementTransformation &Trans, DenseMatrix &elmat) |
|
virtual void | AssemblePatchMatrix (const int patch, const FiniteElementSpace &fes, SparseMatrix *&smat) |
|
virtual void | AssembleTraceFaceMatrix (int elem, const FiniteElement &trial_face_fe, const FiniteElement &test_fe, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleElementVector (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, Vector &elvect) |
| Perform the local action of the BilinearFormIntegrator. Note that the default implementation in the base class is general but not efficient.
|
|
virtual void | AssembleFaceVector (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, Vector &elvect) |
| Perform the local action of the BilinearFormIntegrator resulting from a face integral term. Note that the default implementation in the base class is general but not efficient.
|
|
virtual void | AssembleElementGrad (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, DenseMatrix &elmat) |
| Assemble the local gradient matrix.
|
|
virtual void | AssembleFaceGrad (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, DenseMatrix &elmat) |
| Assemble the local action of the gradient of the NonlinearFormIntegrator resulting from a face integral term.
|
|
virtual void | ComputeElementFlux (const FiniteElement &el, ElementTransformation &Trans, Vector &u, const FiniteElement &fluxelem, Vector &flux, bool with_coef=true, const IntegrationRule *ir=NULL) |
| Virtual method required for Zienkiewicz-Zhu type error estimators.
|
|
virtual real_t | ComputeFluxEnergy (const FiniteElement &fluxelem, ElementTransformation &Trans, Vector &flux, Vector *d_energy=NULL) |
| Virtual method required for Zienkiewicz-Zhu type error estimators.
|
|
virtual bool | RequiresFaceNormalDerivatives () const |
| For bilinear forms on element faces, specifies if the normal derivatives are needed on the faces or just the face restriction.
|
|
virtual void | AddMultPAFaceNormalDerivatives (const Vector &x, const Vector &dxdn, Vector &y, Vector &dydn) const |
| Method for partially assembled action.
|
|
virtual | ~BilinearFormIntegrator () |
|
virtual void | SetIntRule (const IntegrationRule *ir) |
| Prescribe a fixed IntegrationRule to use (when ir != NULL) or let the integrator choose (when ir == NULL).
|
|
void | SetIntegrationMode (Mode m) |
|
void | SetNURBSPatchIntRule (NURBSMeshRules *pr) |
| For patchwise integration, SetNURBSPatchIntRule must be called.
|
|
bool | HasNURBSPatchIntRule () const |
|
bool | Patchwise () const |
|
void | SetIntegrationRule (const IntegrationRule &ir) |
| Prescribe a fixed IntegrationRule to use.
|
|
void | SetPAMemoryType (MemoryType mt) |
|
const IntegrationRule * | GetIntegrationRule () const |
| Get the integration rule of the integrator (possibly NULL).
|
|
virtual real_t | GetElementEnergy (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun) |
| Compute the local energy.
|
|
virtual void | AssembleGradPA (const Vector &x, const FiniteElementSpace &fes) |
| Prepare the integrator for partial assembly (PA) gradient evaluations on the given FE space fes at the state x.
|
|
virtual real_t | GetLocalStateEnergyPA (const Vector &x) const |
| Compute the local (to the MPI rank) energy with partial assembly.
|
|
virtual void | AddMultGradPA (const Vector &x, Vector &y) const |
| Method for partially assembled gradient action.
|
|
virtual void | AssembleGradDiagonalPA (Vector &diag) const |
| Method for computing the diagonal of the gradient with partial assembly.
|
|
virtual bool | SupportsCeed () const |
| Indicates whether this integrator can use a Ceed backend.
|
|
ceed::Operator & | GetCeedOp () |
|
virtual | ~NonlinearFormIntegrator () |
|
Integrator for the DG form:
\[
\alpha \langle \rho_u (u \cdot n) \{v\},[w] \rangle + \beta \langle \rho_u |u \cdot n| [v],[w] \rangle,
\]
where \(v\) and \(w\) are the trial and test variables, respectively, and \(\rho\)/ \(u\) are given scalar/vector coefficients. \(\{v\}\) represents the average value of \(v\) on the face and \([v]\) is the jump such that \(\{v\}=(v_1+v_2)/2\) and \([v]=(v_1-v_2)\) for the face between elements \(1\) and \(2\). For boundary elements, \(v2=0\). The vector coefficient, \(u\), is assumed to be continuous across the faces and when given the scalar coefficient, \(\rho\), is assumed to be discontinuous. The integrator uses the upwind value of \(\rho\), denoted by \(\rho_u\), which is value from the side into which the vector coefficient, \(u\), points.
One use case for this integrator is to discretize the operator \(-u \cdot \nabla v\) with a DG formulation. The resulting formulation uses the ConvectionIntegrator (with coefficient \(u\), and parameter \(\alpha = -1\)) and the transpose of the DGTraceIntegrator (with coefficient \(u\), and parameters \(\alpha = 1\), \(\beta = -1/2\) to use the upwind face flux, see also NonconservativeDGTraceIntegrator). This discretization and the handling of the inflow and outflow boundaries is illustrated in Example 9/9p.
Another use case for this integrator is to discretize the operator \(-\mathrm{div}(u v)\) with a DG formulation. The resulting formulation is conservative and consists of the ConservativeConvectionIntegrator (with coefficient \(u\), and parameter \(\alpha = -1\)) plus the DGTraceIntegrator (with coefficient \(u\), and parameters \(\alpha = -1\), \(\beta = -1/2\) to use the upwind face flux).
Definition at line 3157 of file bilininteg.hpp.