57 int main(
int argc,
char *argv[])
60 const char *mesh_file =
"../data/star.mesh";
63 bool static_cond =
false;
64 bool hybridization =
false;
66 const char *device_config =
"cpu";
67 bool visualization = 1;
70 args.
AddOption(&mesh_file,
"-m",
"--mesh",
73 "Finite element order (polynomial degree).");
74 args.
AddOption(&set_bc,
"-bc",
"--impose-bc",
"-no-bc",
"--dont-impose-bc",
75 "Impose or not essential boundary conditions.");
76 args.
AddOption(&
freq,
"-f",
"--frequency",
"Set the frequency for the exact"
78 args.
AddOption(&static_cond,
"-sc",
"--static-condensation",
"-no-sc",
79 "--no-static-condensation",
"Enable static condensation.");
80 args.
AddOption(&hybridization,
"-hb",
"--hybridization",
"-no-hb",
81 "--no-hybridization",
"Enable hybridization.");
82 args.
AddOption(&pa,
"-pa",
"--partial-assembly",
"-no-pa",
83 "--no-partial-assembly",
"Enable Partial Assembly.");
84 args.
AddOption(&device_config,
"-d",
"--device",
85 "Device configuration string, see Device::Configure().");
86 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
88 "Enable or disable GLVis visualization.");
100 Device device(device_config);
106 Mesh *mesh =
new Mesh(mesh_file, 1, 1);
116 (int)floor(log(25000./mesh->
GetNE())/log(2.)/
dim);
117 for (
int l = 0; l < ref_levels; l++)
127 cout <<
"Number of finite element unknowns: "
138 ess_bdr = set_bc ? 1 : 0;
180 else if (hybridization)
193 cout <<
"Size of linear system: " << A->
Height() << endl;
198 #ifndef MFEM_USE_SUITESPARSE
201 PCG(*A, M, B, X, 1, 10000, 1e-20, 0.0);
205 umf_solver.
Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
207 umf_solver.
Mult(B, X);
215 PCG(*A, M, B, X, 1, 10000, 1e-20, 0.0);
219 CG(*A, B, X, 1, 10000, 1e-20, 0.0);
227 cout <<
"\n|| F_h - F ||_{L^2} = " << x.
ComputeL2Error(F) <<
'\n' << endl;
232 ofstream mesh_ofs(
"refined.mesh");
233 mesh_ofs.precision(8);
234 mesh->
Print(mesh_ofs);
235 ofstream sol_ofs(
"sol.gf");
236 sol_ofs.precision(8);
246 sol_sock.precision(8);
247 sol_sock <<
"solution\n" << *mesh << x << flush;
293 f(0) = temp*cos(kappa*x)*sin(kappa*y);
294 f(1) = temp*cos(kappa*y)*sin(kappa*x);
int Size() const
Return the logical size of the array.
virtual void Print(std::ostream &out=mfem::out) const
Class for grid function - Vector with associated FE space.
A coefficient that is constant across space and time.
virtual double ComputeL2Error(Coefficient &exsol, const IntegrationRule *irs[]=NULL) const
Pointer to an Operator of a specified type.
int Size() const
Returns the size of the vector.
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1)
Get a list of essential true dofs, ess_tdof_list, corresponding to the boundary attributes marked in ...
int GetNE() const
Returns number of elements.
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
bool UsesTensorBasis(const FiniteElementSpace &fes)
int main(int argc, char *argv[])
(Q div u, div v) for RT elements
Data type for Gauss-Seidel smoother of sparse matrix.
Direct sparse solver using UMFPACK.
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
Jacobi smoothing for a given bilinear form (no matrix necessary).
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
void F_exact(const Vector &, Vector &)
void CG(const Operator &A, const Vector &b, Vector &x, int print_iter, int max_num_iter, double RTOLERANCE, double ATOLERANCE)
Conjugate gradient method. (tolerances are squared)
void PCG(const Operator &A, Solver &B, const Vector &b, Vector &x, int print_iter, int max_num_iter, double RTOLERANCE, double ATOLERANCE)
Preconditioned conjugate gradient method. (tolerances are squared)
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
void PrintUsage(std::ostream &out) const
Print the usage message.
Arbitrary order H(div)-conforming Raviart-Thomas finite elements.
A general vector function coefficient.
int SpaceDimension() const
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
double p(const Vector &x, double t)
double Control[UMFPACK_CONTROL]
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
Base class Coefficients that optionally depend on space and time. These are used by the BilinearFormI...
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
void f_exact(const Vector &, Vector &)
void PrintOptions(std::ostream &out) const
Print the options.
virtual void ProjectCoefficient(Coefficient &coeff)
for VectorFiniteElements (Nedelec, Raviart-Thomas)
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
virtual void Mult(const Vector &b, Vector &x) const
Operator application: y=A(x).
double f(const Vector &p)
virtual void SetOperator(const Operator &op)
Factorize the given Operator op which must be a SparseMatrix.
bool Good() const
Return true if the command line options were parsed successfully.