MFEM
v4.2.0
Finite element discretization library
|
A "square matrix" operator for the associated FE space and BLFIntegrators The sum of all the BLFIntegrators can be used form the matrix M. This class also supports other assembly levels specified via the SetAssemblyLevel() function. More...
#include <bilinearform.hpp>
Public Member Functions | |
BilinearForm (FiniteElementSpace *f) | |
Creates bilinear form associated with FE space *f. More... | |
BilinearForm (FiniteElementSpace *f, BilinearForm *bf, int ps=0) | |
Create a BilinearForm on the FiniteElementSpace f, using the same integrators as the BilinearForm bf. More... | |
int | Size () const |
Get the size of the BilinearForm as a square matrix. More... | |
void | SetAssemblyLevel (AssemblyLevel assembly_level) |
Set the desired assembly level. More... | |
AssemblyLevel | GetAssemblyLevel () const |
Returns the assembly level. More... | |
void | EnableStaticCondensation () |
Enable the use of static condensation. For details see the description for class StaticCondensation in fem/staticcond.hpp This method should be called before assembly. If the number of unknowns after static condensation is not reduced, it is not enabled. More... | |
bool | StaticCondensationIsEnabled () const |
Check if static condensation was actually enabled by a previous call to EnableStaticCondensation(). More... | |
FiniteElementSpace * | SCFESpace () const |
Return the trace FE space associated with static condensation. More... | |
void | EnableHybridization (FiniteElementSpace *constr_space, BilinearFormIntegrator *constr_integ, const Array< int > &ess_tdof_list) |
Enable hybridization. More... | |
void | UsePrecomputedSparsity (int ps=1) |
For scalar FE spaces, precompute the sparsity pattern of the matrix (assuming dense element matrices) based on the types of integrators present in the bilinear form. More... | |
void | UseSparsity (int *I, int *J, bool isSorted) |
Use the given CSR sparsity pattern to allocate the internal SparseMatrix. More... | |
void | UseSparsity (SparseMatrix &A) |
Use the sparsity of A to allocate the internal SparseMatrix. More... | |
void | AllocateMatrix () |
Pre-allocate the internal SparseMatrix before assembly. More... | |
Array< BilinearFormIntegrator * > * | GetDBFI () |
Access all the integrators added with AddDomainIntegrator(). More... | |
Array< BilinearFormIntegrator * > * | GetBBFI () |
Access all the integrators added with AddBoundaryIntegrator(). More... | |
Array< Array< int > * > * | GetBBFI_Marker () |
Access all boundary markers added with AddBoundaryIntegrator(). If no marker was specified when the integrator was added, the corresponding pointer (to Array<int>) will be NULL. More... | |
Array< BilinearFormIntegrator * > * | GetFBFI () |
Access all integrators added with AddInteriorFaceIntegrator(). More... | |
Array< BilinearFormIntegrator * > * | GetBFBFI () |
Access all integrators added with AddBdrFaceIntegrator(). More... | |
Array< Array< int > * > * | GetBFBFI_Marker () |
Access all boundary markers added with AddBdrFaceIntegrator(). If no marker was specified when the integrator was added, the corresponding pointer (to Array<int>) will be NULL. More... | |
const double & | operator() (int i, int j) |
Returns a reference to: \( M_{ij} \). More... | |
virtual double & | Elem (int i, int j) |
Returns a reference to: \( M_{ij} \). More... | |
virtual const double & | Elem (int i, int j) const |
Returns constant reference to: \( M_{ij} \). More... | |
virtual void | Mult (const Vector &x, Vector &y) const |
Matrix vector multiplication: \( y = M x \). More... | |
void | FullMult (const Vector &x, Vector &y) const |
Matrix vector multiplication with the original uneliminated matrix. The original matrix is \( M + M_e \) so we have: \( y = M x + M_e x \). More... | |
virtual void | AddMult (const Vector &x, Vector &y, const double a=1.0) const |
Add the matrix vector multiple to a vector: \( y += a M x \). More... | |
void | FullAddMult (const Vector &x, Vector &y) const |
Add the original uneliminated matrix vector multiple to a vector. The original matrix is \( M + Me \) so we have: \( y += M x + M_e x \). More... | |
virtual void | AddMultTranspose (const Vector &x, Vector &y, const double a=1.0) const |
Add the matrix transpose vector multiplication: \( y += a M^T x \). More... | |
void | FullAddMultTranspose (const Vector &x, Vector &y) const |
Add the original uneliminated matrix transpose vector multiple to a vector. The original matrix is \( M + M_e \) so we have: \( y += M^T x + {M_e}^T x \). More... | |
virtual void | MultTranspose (const Vector &x, Vector &y) const |
Matrix transpose vector multiplication: \( y = M^T x \). More... | |
double | InnerProduct (const Vector &x, const Vector &y) const |
Compute \( y^T M x \). More... | |
virtual MatrixInverse * | Inverse () const |
Returns a pointer to (approximation) of the matrix inverse: \( M^{-1} \). More... | |
virtual void | Finalize (int skip_zeros=1) |
Finalizes the matrix initialization. More... | |
const SparseMatrix & | SpMat () const |
Returns a const reference to the sparse matrix. More... | |
SparseMatrix & | SpMat () |
Returns a reference to the sparse matrix: \( M \). More... | |
SparseMatrix * | LoseMat () |
Nullifies the internal matrix \( M \) and returns a pointer to it. Used for transfering ownership. More... | |
const SparseMatrix & | SpMatElim () const |
Returns a const reference to the sparse matrix of eliminated b.c.: \( M_e \). More... | |
SparseMatrix & | SpMatElim () |
Returns a reference to the sparse matrix of eliminated b.c.: \( M_e \). More... | |
void | AddDomainIntegrator (BilinearFormIntegrator *bfi) |
Adds new Domain Integrator. Assumes ownership of bfi. More... | |
void | AddBoundaryIntegrator (BilinearFormIntegrator *bfi) |
Adds new Boundary Integrator. Assumes ownership of bfi. More... | |
void | AddBoundaryIntegrator (BilinearFormIntegrator *bfi, Array< int > &bdr_marker) |
Adds new Boundary Integrator, restricted to specific boundary attributes. More... | |
void | AddInteriorFaceIntegrator (BilinearFormIntegrator *bfi) |
Adds new interior Face Integrator. Assumes ownership of bfi. More... | |
void | AddBdrFaceIntegrator (BilinearFormIntegrator *bfi) |
Adds new boundary Face Integrator. Assumes ownership of bfi. More... | |
void | AddBdrFaceIntegrator (BilinearFormIntegrator *bfi, Array< int > &bdr_marker) |
Adds new boundary Face Integrator, restricted to specific boundary attributes. More... | |
void | operator= (const double a) |
Sets all sparse values of \( M \) and \( M_e \) to 'a'. More... | |
void | Assemble (int skip_zeros=1) |
Assembles the form i.e. sums over all domain/bdr integrators. More... | |
void | AssembleDiagonal (Vector &diag) const |
Assemble the diagonal of the bilinear form into diag. More... | |
virtual const Operator * | GetProlongation () const |
Get the finite element space prolongation operator. More... | |
virtual const Operator * | GetRestriction () const |
Get the finite element space restriction operator. More... | |
virtual const Operator * | GetOutputProlongation () const |
Get the output finite element space prolongation matrix. More... | |
virtual const Operator * | GetOutputRestriction () const |
Get the output finite element space restriction matrix. More... | |
virtual void | FormLinearSystem (const Array< int > &ess_tdof_list, Vector &x, Vector &b, OperatorHandle &A, Vector &X, Vector &B, int copy_interior=0) |
Form the linear system A X = B, corresponding to this bilinear form and the linear form b(.). More... | |
template<typename OpType > | |
void | FormLinearSystem (const Array< int > &ess_tdof_list, Vector &x, Vector &b, OpType &A, Vector &X, Vector &B, int copy_interior=0) |
Form the linear system A X = B, corresponding to this bilinear form and the linear form b(.). More... | |
virtual void | FormSystemMatrix (const Array< int > &ess_tdof_list, OperatorHandle &A) |
Form the linear system matrix A, see FormLinearSystem() for details. More... | |
template<typename OpType > | |
void | FormSystemMatrix (const Array< int > &ess_tdof_list, OpType &A) |
Form the linear system matrix A, see FormLinearSystem() for details. More... | |
virtual void | RecoverFEMSolution (const Vector &X, const Vector &b, Vector &x) |
Recover the solution of a linear system formed with FormLinearSystem(). More... | |
void | ComputeElementMatrices () |
Compute and store internally all element matrices. More... | |
void | FreeElementMatrices () |
Free the memory used by the element matrices. More... | |
void | ComputeElementMatrix (int i, DenseMatrix &elmat) |
Compute the element matrix of the given element. More... | |
void | ComputeBdrElementMatrix (int i, DenseMatrix &elmat) |
Compute the boundary element matrix of the given boundary element. More... | |
void | AssembleElementMatrix (int i, const DenseMatrix &elmat, int skip_zeros=1) |
Assemble the given element matrix. More... | |
void | AssembleElementMatrix (int i, const DenseMatrix &elmat, Array< int > &vdofs, int skip_zeros=1) |
Assemble the given element matrix. More... | |
void | AssembleBdrElementMatrix (int i, const DenseMatrix &elmat, int skip_zeros=1) |
Assemble the given boundary element matrix. More... | |
void | AssembleBdrElementMatrix (int i, const DenseMatrix &elmat, Array< int > &vdofs, int skip_zeros=1) |
Assemble the given boundary element matrix. More... | |
void | EliminateEssentialBC (const Array< int > &bdr_attr_is_ess, const Vector &sol, Vector &rhs, DiagonalPolicy dpolicy=DIAG_ONE) |
Eliminate essential boundary DOFs from the system. More... | |
void | EliminateEssentialBC (const Array< int > &bdr_attr_is_ess, DiagonalPolicy dpolicy=DIAG_ONE) |
Eliminate essential boundary DOFs from the system matrix. More... | |
void | EliminateEssentialBCDiag (const Array< int > &bdr_attr_is_ess, double value) |
Perform elimination and set the diagonal entry to the given value. More... | |
void | EliminateVDofs (const Array< int > &vdofs, const Vector &sol, Vector &rhs, DiagonalPolicy dpolicy=DIAG_ONE) |
Eliminate the given vdofs. NOTE: here, vdofs is a list of DOFs. More... | |
void | EliminateVDofs (const Array< int > &vdofs, DiagonalPolicy dpolicy=DIAG_ONE) |
Eliminate the given vdofs, storing the eliminated part internally in \( M_e \). More... | |
void | EliminateEssentialBCFromDofs (const Array< int > &ess_dofs, const Vector &sol, Vector &rhs, DiagonalPolicy dpolicy=DIAG_ONE) |
Similar to EliminateVDofs(const Array<int> &, const Vector &, Vector &, DiagonalPolicy) but here ess_dofs is a marker (boolean) array on all vector-dofs (ess_dofs[i] < 0 is true). More... | |
void | EliminateEssentialBCFromDofs (const Array< int > &ess_dofs, DiagonalPolicy dpolicy=DIAG_ONE) |
Similar to EliminateVDofs(const Array<int> &, DiagonalPolicy) but here ess_dofs is a marker (boolean) array on all vector-dofs (ess_dofs[i] < 0 is true). More... | |
void | EliminateEssentialBCFromDofsDiag (const Array< int > &ess_dofs, double value) |
Perform elimination and set the diagonal entry to the given value. More... | |
void | EliminateVDofsInRHS (const Array< int > &vdofs, const Vector &x, Vector &b) |
Use the stored eliminated part of the matrix (see EliminateVDofs(const Array<int> &, DiagonalPolicy)) to modify the r.h.s. b; vdofs is a list of DOFs (non-directional, i.e. >= 0). More... | |
double | FullInnerProduct (const Vector &x, const Vector &y) const |
Compute inner product for full uneliminated matrix \( y^T M x + y^T M_e x \). More... | |
virtual void | Update (FiniteElementSpace *nfes=NULL) |
Update the FiniteElementSpace and delete all data associated with the old one. More... | |
MFEM_DEPRECATED FiniteElementSpace * | GetFES () |
(DEPRECATED) Return the FE space associated with the BilinearForm. More... | |
FiniteElementSpace * | FESpace () |
Return the FE space associated with the BilinearForm. More... | |
const FiniteElementSpace * | FESpace () const |
Read-only access to the associated FiniteElementSpace. More... | |
void | SetDiagonalPolicy (DiagonalPolicy policy) |
Sets diagonal policy used upon construction of the linear system. More... | |
void | UseExternalIntegrators () |
Indicate that integrators are not owned by the BilinearForm. More... | |
virtual | ~BilinearForm () |
Destroys bilinear form. More... | |
Public Member Functions inherited from mfem::Matrix | |
Matrix (int s) | |
Creates a square matrix of size s. More... | |
Matrix (int h, int w) | |
Creates a matrix of the given height and width. More... | |
bool | IsSquare () const |
Returns whether the matrix is a square matrix. More... | |
virtual void | Print (std::ostream &out=mfem::out, int width_=4) const |
Prints matrix to stream out. More... | |
virtual | ~Matrix () |
Destroys matrix. More... | |
Public Member Functions inherited from mfem::Operator | |
void | InitTVectors (const Operator *Po, const Operator *Ri, const Operator *Pi, Vector &x, Vector &b, Vector &X, Vector &B) const |
Initializes memory for true vectors of linear system. More... | |
Operator (int s=0) | |
Construct a square Operator with given size s (default 0). More... | |
Operator (int h, int w) | |
Construct an Operator with the given height (output size) and width (input size). More... | |
int | Height () const |
Get the height (size of output) of the Operator. Synonym with NumRows(). More... | |
int | NumRows () const |
Get the number of rows (size of output) of the Operator. Synonym with Height(). More... | |
int | Width () const |
Get the width (size of input) of the Operator. Synonym with NumCols(). More... | |
int | NumCols () const |
Get the number of columns (size of input) of the Operator. Synonym with Width(). More... | |
virtual MemoryClass | GetMemoryClass () const |
Return the MemoryClass preferred by the Operator. More... | |
virtual Operator & | GetGradient (const Vector &x) const |
Evaluate the gradient operator at the point x. The default behavior in class Operator is to generate an error. More... | |
void | FormLinearSystem (const Array< int > &ess_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B, int copy_interior=0) |
Form a constrained linear system using a matrix-free approach. More... | |
void | FormRectangularLinearSystem (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B) |
Form a column-constrained linear system using a matrix-free approach. More... | |
void | FormSystemOperator (const Array< int > &ess_tdof_list, Operator *&A) |
Return in A a parallel (on truedofs) version of this square operator. More... | |
void | FormRectangularSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Operator *&A) |
Return in A a parallel (on truedofs) version of this rectangular operator (including constraints). More... | |
void | FormDiscreteOperator (Operator *&A) |
Return in A a parallel (on truedofs) version of this rectangular operator. More... | |
void | PrintMatlab (std::ostream &out, int n=0, int m=0) const |
Prints operator with input size n and output size m in Matlab format. More... | |
virtual | ~Operator () |
Virtual destructor. More... | |
Type | GetType () const |
Return the type ID of the Operator class. More... | |
Protected Member Functions | |
void | AllocMat () |
void | ConformingAssemble () |
BilinearForm () | |
Protected Member Functions inherited from mfem::Operator | |
void | FormConstrainedSystemOperator (const Array< int > &ess_tdof_list, ConstrainedOperator *&Aout) |
see FormSystemOperator() More... | |
void | FormRectangularConstrainedSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, RectangularConstrainedOperator *&Aout) |
see FormRectangularSystemOperator() More... | |
Operator * | SetupRAP (const Operator *Pi, const Operator *Po) |
Returns RAP Operator of this, taking in input/output Prolongation matrices. More... | |
Protected Attributes | |
SparseMatrix * | mat |
Sparse matrix \( M \) to be associated with the form. Owned. More... | |
SparseMatrix * | mat_e |
Sparse Matrix \( M_e \) used to store the eliminations from the b.c. Owned. \( M + M_e = M_{original} \). More... | |
FiniteElementSpace * | fes |
FE space on which the form lives. Not owned. More... | |
AssemblyLevel | assembly |
The assembly level of the form (full, partial, etc.) More... | |
int | batch |
Element batch size used in the form action (1, 8, num_elems, etc.) More... | |
BilinearFormExtension * | ext |
Extension for supporting Full Assembly (FA), Element Assembly (EA), Partial Assembly (PA), or Matrix Free assembly (MF). More... | |
long | sequence |
Indicates the Mesh::sequence corresponding to the current state of the BilinearForm. More... | |
int | extern_bfs |
Indicates the BilinearFormIntegrators stored in dbfi, bbfi, fbfi, and bfbfi are owned by another BilinearForm. More... | |
Array< BilinearFormIntegrator * > | dbfi |
Set of Domain Integrators to be applied. More... | |
Array< BilinearFormIntegrator * > | bbfi |
Set of Boundary Integrators to be applied. More... | |
Array< Array< int > * > | bbfi_marker |
Entries are not owned. More... | |
Array< BilinearFormIntegrator * > | fbfi |
Set of interior face Integrators to be applied. More... | |
Array< BilinearFormIntegrator * > | bfbfi |
Set of boundary face Integrators to be applied. More... | |
Array< Array< int > * > | bfbfi_marker |
Entries are not owned. More... | |
DenseMatrix | elemmat |
Array< int > | vdofs |
DenseTensor * | element_matrices |
Owned. More... | |
StaticCondensation * | static_cond |
Owned. More... | |
Hybridization * | hybridization |
Owned. More... | |
DiagonalPolicy | diag_policy |
int | precompute_sparsity |
Protected Attributes inherited from mfem::Operator | |
int | height |
Dimension of the output / number of rows in the matrix. More... | |
int | width |
Dimension of the input / number of columns in the matrix. More... | |
Additional Inherited Members | |
Public Types inherited from mfem::Operator | |
enum | DiagonalPolicy { DIAG_ZERO, DIAG_ONE, DIAG_KEEP } |
Defines operator diagonal policy upon elimination of rows and/or columns. More... | |
enum | Type { ANY_TYPE, MFEM_SPARSEMAT, Hypre_ParCSR, PETSC_MATAIJ, PETSC_MATIS, PETSC_MATSHELL, PETSC_MATNEST, PETSC_MATHYPRE, PETSC_MATGENERIC, Complex_Operator, MFEM_ComplexSparseMat, Complex_Hypre_ParCSR } |
Enumeration defining IDs for some classes derived from Operator. More... | |
A "square matrix" operator for the associated FE space and BLFIntegrators The sum of all the BLFIntegrators can be used form the matrix M. This class also supports other assembly levels specified via the SetAssemblyLevel() function.
Definition at line 54 of file bilinearform.hpp.
|
inlineprotected |
Definition at line 118 of file bilinearform.hpp.
mfem::BilinearForm::BilinearForm | ( | FiniteElementSpace * | f | ) |
Creates bilinear form associated with FE space *f.
The pointer f is not owned by the newly constructed object.
Definition at line 66 of file bilinearform.cpp.
mfem::BilinearForm::BilinearForm | ( | FiniteElementSpace * | f, |
BilinearForm * | bf, | ||
int | ps = 0 |
||
) |
Create a BilinearForm on the FiniteElementSpace f, using the same integrators as the BilinearForm bf.
The pointer f is not owned by the newly constructed object.
The integrators in bf are copied as pointers and they are not owned by the newly constructed BilinearForm.
The optional parameter ps is used to initialize the internal flag precompute_sparsity, see UsePrecomputedSparsity() for details.
Definition at line 84 of file bilinearform.cpp.
|
virtual |
Destroys bilinear form.
Definition at line 1082 of file bilinearform.cpp.
void mfem::BilinearForm::AddBdrFaceIntegrator | ( | BilinearFormIntegrator * | bfi | ) |
Adds new boundary Face Integrator. Assumes ownership of bfi.
Definition at line 258 of file bilinearform.cpp.
void mfem::BilinearForm::AddBdrFaceIntegrator | ( | BilinearFormIntegrator * | bfi, |
Array< int > & | bdr_marker | ||
) |
Adds new boundary Face Integrator, restricted to specific boundary attributes.
Assumes ownership of bfi. The array bdr_marker is stored internally as a pointer to the given Array<int> object.
Definition at line 264 of file bilinearform.cpp.
void mfem::BilinearForm::AddBoundaryIntegrator | ( | BilinearFormIntegrator * | bfi | ) |
Adds new Boundary Integrator. Assumes ownership of bfi.
Definition at line 240 of file bilinearform.cpp.
void mfem::BilinearForm::AddBoundaryIntegrator | ( | BilinearFormIntegrator * | bfi, |
Array< int > & | bdr_marker | ||
) |
Adds new Boundary Integrator, restricted to specific boundary attributes.
Assumes ownership of bfi. The array bdr_marker is stored internally as a pointer to the given Array<int> object.
Definition at line 246 of file bilinearform.cpp.
void mfem::BilinearForm::AddDomainIntegrator | ( | BilinearFormIntegrator * | bfi | ) |
Adds new Domain Integrator. Assumes ownership of bfi.
Definition at line 235 of file bilinearform.cpp.
void mfem::BilinearForm::AddInteriorFaceIntegrator | ( | BilinearFormIntegrator * | bfi | ) |
Adds new interior Face Integrator. Assumes ownership of bfi.
Definition at line 253 of file bilinearform.cpp.
|
inlinevirtual |
Add the matrix vector multiple to a vector: \( y += a M x \).
Definition at line 258 of file bilinearform.hpp.
|
inlinevirtual |
Add the matrix transpose vector multiplication: \( y += a M^T x \).
Definition at line 268 of file bilinearform.hpp.
|
inline |
Pre-allocate the internal SparseMatrix before assembly.
If the flag 'precompute sparsity' is set, the matrix is allocated in CSR format (i.e. finalized) and the entries are initialized with zeros.
Definition at line 217 of file bilinearform.hpp.
|
protected |
Definition at line 21 of file bilinearform.cpp.
void mfem::BilinearForm::Assemble | ( | int | skip_zeros = 1 | ) |
Assembles the form i.e. sums over all domain/bdr integrators.
Definition at line 376 of file bilinearform.cpp.
void mfem::BilinearForm::AssembleBdrElementMatrix | ( | int | i, |
const DenseMatrix & | elmat, | ||
int | skip_zeros = 1 |
||
) |
Assemble the given boundary element matrix.
The boundary element matrix elmat is assembled for the boundary element i, i.e. added to the system matrix. The flag skip_zeros skips the zero elements of the matrix, unless they are breaking the symmetry of the system matrix.
Definition at line 348 of file bilinearform.cpp.
void mfem::BilinearForm::AssembleBdrElementMatrix | ( | int | i, |
const DenseMatrix & | elmat, | ||
Array< int > & | vdofs, | ||
int | skip_zeros = 1 |
||
) |
Assemble the given boundary element matrix.
The boundary element matrix elmat is assembled for the boundary element i, i.e. added to the system matrix. The vdofs of the element are returned in vdofs. The flag skip_zeros skips the zero elements of the matrix, unless they are breaking the symmetry of the system matrix.
Definition at line 354 of file bilinearform.cpp.
void mfem::BilinearForm::AssembleDiagonal | ( | Vector & | diag | ) | const |
Assemble the diagonal of the bilinear form into diag.
For adaptively refined meshes, this returns P^T d_e, where d_e is the locally assembled diagonal on each element and P^T is the transpose of the conforming prolongation. In general this is not the correct diagonal for an AMR mesh.
Definition at line 622 of file bilinearform.cpp.
void mfem::BilinearForm::AssembleElementMatrix | ( | int | i, |
const DenseMatrix & | elmat, | ||
int | skip_zeros = 1 |
||
) |
Assemble the given element matrix.
The element matrix elmat is assembled for the element i, i.e. added to the system matrix. The flag skip_zeros skips the zero elements of the matrix, unless they are breaking the symmetry of the system matrix.
Definition at line 320 of file bilinearform.cpp.
void mfem::BilinearForm::AssembleElementMatrix | ( | int | i, |
const DenseMatrix & | elmat, | ||
Array< int > & | vdofs, | ||
int | skip_zeros = 1 |
||
) |
Assemble the given element matrix.
The element matrix elmat is assembled for the element i, i.e. added to the system matrix. The vdofs of the element are returned in vdofs. The flag skip_zeros skips the zero elements of the matrix, unless they are breaking the symmetry of the system matrix.
Definition at line 326 of file bilinearform.cpp.
void mfem::BilinearForm::ComputeBdrElementMatrix | ( | int | i, |
DenseMatrix & | elmat | ||
) |
Compute the boundary element matrix of the given boundary element.
Definition at line 299 of file bilinearform.cpp.
void mfem::BilinearForm::ComputeElementMatrices | ( | ) |
Compute and store internally all element matrices.
Definition at line 843 of file bilinearform.cpp.
void mfem::BilinearForm::ComputeElementMatrix | ( | int | i, |
DenseMatrix & | elmat | ||
) |
Compute the element matrix of the given element.
The element matrix is computed by calling the domain integrators or the one stored internally by a prior call of ComputeElementMatrices() is returned when available.
Definition at line 271 of file bilinearform.cpp.
|
protected |
Definition at line 587 of file bilinearform.cpp.
|
virtual |
Returns a reference to: \( M_{ij} \).
Implements mfem::Matrix.
Definition at line 209 of file bilinearform.cpp.
|
virtual |
Returns constant reference to: \( M_{ij} \).
Implements mfem::Matrix.
Definition at line 214 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateEssentialBC | ( | const Array< int > & | bdr_attr_is_ess, |
const Vector & | sol, | ||
Vector & | rhs, | ||
DiagonalPolicy | dpolicy = DIAG_ONE |
||
) |
Eliminate essential boundary DOFs from the system.
The array bdr_attr_is_ess marks boundary attributes that constitute the essential part of the boundary. By default, the diagonal at the essential DOFs is set to 1.0. This behavior is controlled by the argument dpolicy.
Definition at line 885 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateEssentialBC | ( | const Array< int > & | bdr_attr_is_ess, |
DiagonalPolicy | dpolicy = DIAG_ONE |
||
) |
Eliminate essential boundary DOFs from the system matrix.
Definition at line 903 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateEssentialBCDiag | ( | const Array< int > & | bdr_attr_is_ess, |
double | value | ||
) |
Perform elimination and set the diagonal entry to the given value.
Definition at line 920 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateEssentialBCFromDofs | ( | const Array< int > & | ess_dofs, |
const Vector & | sol, | ||
Vector & | rhs, | ||
DiagonalPolicy | dpolicy = DIAG_ONE |
||
) |
Similar to EliminateVDofs(const Array<int> &, const Vector &, Vector &, DiagonalPolicy) but here ess_dofs is a marker (boolean) array on all vector-dofs (ess_dofs[i] < 0 is true).
Definition at line 977 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateEssentialBCFromDofs | ( | const Array< int > & | ess_dofs, |
DiagonalPolicy | dpolicy = DIAG_ONE |
||
) |
Similar to EliminateVDofs(const Array<int> &, DiagonalPolicy) but here ess_dofs is a marker (boolean) array on all vector-dofs (ess_dofs[i] < 0 is true).
Definition at line 992 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateEssentialBCFromDofsDiag | ( | const Array< int > & | ess_dofs, |
double | value | ||
) |
Perform elimination and set the diagonal entry to the given value.
Definition at line 1004 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateVDofs | ( | const Array< int > & | vdofs, |
const Vector & | sol, | ||
Vector & | rhs, | ||
DiagonalPolicy | dpolicy = DIAG_ONE |
||
) |
Eliminate the given vdofs. NOTE: here, vdofs is a list of DOFs.
In this case the eliminations are applied to the internal \( M \) and rhs without storing the elimination matrix \( M_e \).
Definition at line 937 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateVDofs | ( | const Array< int > & | vdofs, |
DiagonalPolicy | dpolicy = DIAG_ONE |
||
) |
Eliminate the given vdofs, storing the eliminated part internally in \( M_e \).
This method works in conjunction with EliminateVDofsInRHS() and allows elimination of boundary conditions in multiple right-hand sides. In this method, vdofs is a list of DOFs.
Definition at line 955 of file bilinearform.cpp.
void mfem::BilinearForm::EliminateVDofsInRHS | ( | const Array< int > & | vdofs, |
const Vector & | x, | ||
Vector & | b | ||
) |
Use the stored eliminated part of the matrix (see EliminateVDofs(const Array<int> &, DiagonalPolicy)) to modify the r.h.s. b; vdofs is a list of DOFs (non-directional, i.e. >= 0).
Definition at line 1016 of file bilinearform.cpp.
void mfem::BilinearForm::EnableHybridization | ( | FiniteElementSpace * | constr_space, |
BilinearFormIntegrator * | constr_integ, | ||
const Array< int > & | ess_tdof_list | ||
) |
Enable hybridization.
For details see the description for class Hybridization in fem/hybridization.hpp. This method should be called before assembly.
Definition at line 166 of file bilinearform.cpp.
void mfem::BilinearForm::EnableStaticCondensation | ( | ) |
Enable the use of static condensation. For details see the description for class StaticCondensation in fem/staticcond.hpp This method should be called before assembly. If the number of unknowns after static condensation is not reduced, it is not enabled.
Definition at line 143 of file bilinearform.cpp.
|
inline |
Return the FE space associated with the BilinearForm.
Definition at line 575 of file bilinearform.hpp.
|
inline |
Read-only access to the associated FiniteElementSpace.
Definition at line 577 of file bilinearform.hpp.
|
virtual |
Finalizes the matrix initialization.
Reimplemented from mfem::Matrix.
Definition at line 224 of file bilinearform.cpp.
|
virtual |
Form the linear system A X = B, corresponding to this bilinear form and the linear form b(.).
This method applies any necessary transformations to the linear system such as: eliminating boundary conditions; applying conforming constraints for non-conforming AMR; parallel assembly; static condensation; hybridization.
The GridFunction-size vector x must contain the essential b.c. The BilinearForm and the LinearForm-size vector b must be assembled.
The vector X is initialized with a suitable initial guess: when using hybridization, the vector X is set to zero; otherwise, the essential entries of X are set to the corresponding b.c. and all other entries are set to zero (copy_interior == 0) or copied from x (copy_interior != 0).
This method can be called multiple times (with the same ess_tdof_list array) to initialize different right-hand sides and boundary condition values.
After solving the linear system, the finite element solution x can be recovered by calling RecoverFEMSolution() (with the same vectors X, b, and x).
NOTE: If there are no transformations, X simply reuses the data of x.
Reimplemented in mfem::ParBilinearForm.
Definition at line 673 of file bilinearform.cpp.
|
inline |
Form the linear system A X = B, corresponding to this bilinear form and the linear form b(.).
Version of the method FormLinearSystem() where the system matrix is returned in the variable A, of type OpType, holding a reference to the system matrix (created with the method OpType::MakeRef()). The reference will be invalidated when SetOperatorType(), Update(), or the destructor is called.
Definition at line 421 of file bilinearform.hpp.
|
virtual |
Form the linear system matrix A, see FormLinearSystem() for details.
Reimplemented in mfem::ParBilinearForm.
Definition at line 742 of file bilinearform.cpp.
|
inline |
Form the linear system matrix A, see FormLinearSystem() for details.
Version of the method FormSystemMatrix() where the system matrix is returned in the variable A, of type OpType, holding a reference to the system matrix (created with the method OpType::MakeRef()). The reference will be invalidated when SetOperatorType(), Update(), or the destructor is called.
Definition at line 443 of file bilinearform.hpp.
|
inline |
Free the memory used by the element matrices.
Definition at line 463 of file bilinearform.hpp.
Add the original uneliminated matrix vector multiple to a vector. The original matrix is \( M + Me \) so we have: \( y += M x + M_e x \).
Definition at line 264 of file bilinearform.hpp.
Add the original uneliminated matrix transpose vector multiple to a vector. The original matrix is \( M + M_e \) so we have: \( y += M^T x + {M_e}^T x \).
Definition at line 275 of file bilinearform.hpp.
Compute inner product for full uneliminated matrix \( y^T M x + y^T M_e x \).
Definition at line 564 of file bilinearform.hpp.
Matrix vector multiplication with the original uneliminated matrix. The original matrix is \( M + M_e \) so we have: \( y = M x + M_e x \).
Definition at line 254 of file bilinearform.hpp.
|
inline |
Returns the assembly level.
Definition at line 170 of file bilinearform.hpp.
|
inline |
Access all the integrators added with AddBoundaryIntegrator().
Definition at line 223 of file bilinearform.hpp.
Access all boundary markers added with AddBoundaryIntegrator(). If no marker was specified when the integrator was added, the corresponding pointer (to Array<int>) will be NULL.
Definition at line 227 of file bilinearform.hpp.
|
inline |
Access all integrators added with AddBdrFaceIntegrator().
Definition at line 233 of file bilinearform.hpp.
Access all boundary markers added with AddBdrFaceIntegrator(). If no marker was specified when the integrator was added, the corresponding pointer (to Array<int>) will be NULL.
Definition at line 237 of file bilinearform.hpp.
|
inline |
Access all the integrators added with AddDomainIntegrator().
Definition at line 220 of file bilinearform.hpp.
|
inline |
Access all integrators added with AddInteriorFaceIntegrator().
Definition at line 230 of file bilinearform.hpp.
|
inline |
(DEPRECATED) Return the FE space associated with the BilinearForm.
Definition at line 572 of file bilinearform.hpp.
|
inlinevirtual |
Get the output finite element space prolongation matrix.
Reimplemented from mfem::Operator.
Definition at line 377 of file bilinearform.hpp.
|
inlinevirtual |
Get the output finite element space restriction matrix.
Reimplemented from mfem::Operator.
Definition at line 380 of file bilinearform.hpp.
|
inlinevirtual |
Get the finite element space prolongation operator.
Reimplemented from mfem::Operator.
Reimplemented in mfem::ParBilinearForm.
Definition at line 371 of file bilinearform.hpp.
|
inlinevirtual |
Get the finite element space restriction operator.
Reimplemented from mfem::Operator.
Reimplemented in mfem::ParBilinearForm.
Definition at line 374 of file bilinearform.hpp.
Compute \( y^T M x \).
Definition at line 283 of file bilinearform.hpp.
|
virtual |
Returns a pointer to (approximation) of the matrix inverse: \( M^{-1} \).
Implements mfem::Matrix.
Definition at line 219 of file bilinearform.cpp.
|
inline |
Nullifies the internal matrix \( M \) and returns a pointer to it. Used for transfering ownership.
Definition at line 308 of file bilinearform.hpp.
Matrix vector multiplication: \( y = M x \).
Implements mfem::Operator.
Definition at line 1023 of file bilinearform.cpp.
Matrix transpose vector multiplication: \( y = M^T x \).
Reimplemented from mfem::Operator.
Definition at line 279 of file bilinearform.hpp.
|
inline |
Returns a reference to: \( M_{ij} \).
Definition at line 240 of file bilinearform.hpp.
|
inline |
Sets all sparse values of \( M \) and \( M_e \) to 'a'.
Definition at line 353 of file bilinearform.hpp.
|
virtual |
Recover the solution of a linear system formed with FormLinearSystem().
Call this method after solving a linear system constructed using the FormLinearSystem() method to recover the solution as a GridFunction-size vector in x. Use the same arguments as in the FormLinearSystem() call.
Reimplemented from mfem::Operator.
Reimplemented in mfem::ParBilinearForm.
Definition at line 785 of file bilinearform.cpp.
|
inline |
Return the trace FE space associated with static condensation.
Definition at line 183 of file bilinearform.hpp.
void mfem::BilinearForm::SetAssemblyLevel | ( | AssemblyLevel | assembly_level | ) |
Set the desired assembly level.
Valid choices are:
This method must be called before assembly.
Definition at line 115 of file bilinearform.cpp.
void mfem::BilinearForm::SetDiagonalPolicy | ( | DiagonalPolicy | policy | ) |
Sets diagonal policy used upon construction of the linear system.
Policies include:
Definition at line 1077 of file bilinearform.cpp.
|
inline |
Get the size of the BilinearForm as a square matrix.
Definition at line 155 of file bilinearform.hpp.
|
inline |
Returns a const reference to the sparse matrix.
Definition at line 293 of file bilinearform.hpp.
|
inline |
Returns a reference to the sparse matrix: \( M \).
Definition at line 300 of file bilinearform.hpp.
|
inline |
Returns a const reference to the sparse matrix of eliminated b.c.: \( M_e \).
Definition at line 311 of file bilinearform.hpp.
|
inline |
Returns a reference to the sparse matrix of eliminated b.c.: \( M_e \).
Definition at line 318 of file bilinearform.hpp.
|
inline |
Check if static condensation was actually enabled by a previous call to EnableStaticCondensation().
Definition at line 180 of file bilinearform.hpp.
|
virtual |
Update the FiniteElementSpace and delete all data associated with the old one.
Reimplemented in mfem::ParBilinearForm.
Definition at line 1035 of file bilinearform.cpp.
|
inline |
Indicate that integrators are not owned by the BilinearForm.
Definition at line 589 of file bilinearform.hpp.
|
inline |
For scalar FE spaces, precompute the sparsity pattern of the matrix (assuming dense element matrices) based on the types of integrators present in the bilinear form.
Definition at line 197 of file bilinearform.hpp.
void mfem::BilinearForm::UseSparsity | ( | int * | I, |
int * | J, | ||
bool | isSorted | ||
) |
Use the given CSR sparsity pattern to allocate the internal SparseMatrix.
Definition at line 183 of file bilinearform.cpp.
void mfem::BilinearForm::UseSparsity | ( | SparseMatrix & | A | ) |
Use the sparsity of A to allocate the internal SparseMatrix.
Definition at line 199 of file bilinearform.cpp.
|
protected |
The assembly level of the form (full, partial, etc.)
Definition at line 69 of file bilinearform.hpp.
|
protected |
Element batch size used in the form action (1, 8, num_elems, etc.)
Definition at line 71 of file bilinearform.hpp.
|
protected |
Set of Boundary Integrators to be applied.
Definition at line 88 of file bilinearform.hpp.
Entries are not owned.
Definition at line 89 of file bilinearform.hpp.
|
protected |
Set of boundary face Integrators to be applied.
Definition at line 95 of file bilinearform.hpp.
Entries are not owned.
Definition at line 96 of file bilinearform.hpp.
|
protected |
Set of Domain Integrators to be applied.
Definition at line 85 of file bilinearform.hpp.
|
protected |
This data member allows one to specify what should be done to the diagonal matrix entries and corresponding RHS values upon elimination of the constrained DoFs.
Definition at line 109 of file bilinearform.hpp.
|
protected |
Owned.
Definition at line 101 of file bilinearform.hpp.
|
protected |
Definition at line 98 of file bilinearform.hpp.
|
protected |
Extension for supporting Full Assembly (FA), Element Assembly (EA), Partial Assembly (PA), or Matrix Free assembly (MF).
Definition at line 74 of file bilinearform.hpp.
|
protected |
Indicates the BilinearFormIntegrators stored in dbfi, bbfi, fbfi, and bfbfi are owned by another BilinearForm.
Definition at line 82 of file bilinearform.hpp.
|
protected |
Set of interior face Integrators to be applied.
Definition at line 92 of file bilinearform.hpp.
|
protected |
FE space on which the form lives. Not owned.
Definition at line 66 of file bilinearform.hpp.
|
protected |
Owned.
Definition at line 104 of file bilinearform.hpp.
|
protected |
Sparse matrix \( M \) to be associated with the form. Owned.
Definition at line 58 of file bilinearform.hpp.
|
protected |
Sparse Matrix \( M_e \) used to store the eliminations from the b.c. Owned. \( M + M_e = M_{original} \).
Definition at line 63 of file bilinearform.hpp.
|
protected |
Definition at line 111 of file bilinearform.hpp.
|
protected |
Indicates the Mesh::sequence corresponding to the current state of the BilinearForm.
Definition at line 78 of file bilinearform.hpp.
|
protected |
Owned.
Definition at line 103 of file bilinearform.hpp.
|
protected |
Definition at line 99 of file bilinearform.hpp.