MFEM
v4.2.0
Finite element discretization library
|
Class for grid function - Vector with associated FE space. More...
#include <gridfunc.hpp>
Public Types | |
enum | AvgType { ARITHMETIC, HARMONIC } |
Public Member Functions | |
GridFunction () | |
GridFunction (const GridFunction &orig) | |
Copy constructor. The internal true-dof vector t_vec is not copied. More... | |
GridFunction (FiniteElementSpace *f) | |
Construct a GridFunction associated with the FiniteElementSpace *f. More... | |
GridFunction (FiniteElementSpace *f, double *data) | |
Construct a GridFunction using previously allocated array data. More... | |
GridFunction (Mesh *m, std::istream &input) | |
Construct a GridFunction on the given Mesh, using the data from input. More... | |
GridFunction (Mesh *m, GridFunction *gf_array[], int num_pieces) | |
GridFunction & | operator= (const GridFunction &rhs) |
Copy assignment. Only the data of the base class Vector is copied. More... | |
void | MakeOwner (FiniteElementCollection *_fec) |
Make the GridFunction the owner of fec and fes. More... | |
FiniteElementCollection * | OwnFEC () |
int | VectorDim () const |
const Vector & | GetTrueVector () const |
Read only access to the (optional) internal true-dof Vector. More... | |
Vector & | GetTrueVector () |
Read and write access to the (optional) internal true-dof Vector. More... | |
void | GetTrueDofs (Vector &tv) const |
Extract the true-dofs from the GridFunction. If all dofs are true, then tv will be set to point to the data of *this . More... | |
void | SetTrueVector () |
Shortcut for calling GetTrueDofs() with GetTrueVector() as argument. More... | |
virtual void | SetFromTrueDofs (const Vector &tv) |
Set the GridFunction from the given true-dof vector. More... | |
void | SetFromTrueVector () |
Shortcut for calling SetFromTrueDofs() with GetTrueVector() as argument. More... | |
void | GetNodalValues (int i, Array< double > &nval, int vdim=1) const |
Returns the values in the vertices of i'th element for dimension vdim. More... | |
void | GetLaplacians (int i, const IntegrationRule &ir, Vector &laps, int vdim=1) const |
void | GetLaplacians (int i, const IntegrationRule &ir, Vector &laps, DenseMatrix &tr, int vdim=1) const |
void | GetHessians (int i, const IntegrationRule &ir, DenseMatrix &hess, int vdim=1) const |
void | GetHessians (int i, const IntegrationRule &ir, DenseMatrix &hess, DenseMatrix &tr, int vdim=1) const |
void | GetValuesFrom (const GridFunction &orig_func) |
void | GetBdrValuesFrom (const GridFunction &orig_func) |
void | GetVectorFieldValues (int i, const IntegrationRule &ir, DenseMatrix &vals, DenseMatrix &tr, int comp=0) const |
void | ReorderByNodes () |
For a vector grid function, makes sure that the ordering is byNODES. More... | |
void | GetNodalValues (Vector &nval, int vdim=1) const |
Return the values as a vector on mesh vertices for dimension vdim. More... | |
void | GetVectorFieldNodalValues (Vector &val, int comp) const |
void | ProjectVectorFieldOn (GridFunction &vec_field, int comp=0) |
void | GetDerivative (int comp, int der_comp, GridFunction &der) |
double | GetDivergence (ElementTransformation &tr) const |
void | GetCurl (ElementTransformation &tr, Vector &curl) const |
void | GetGradient (ElementTransformation &tr, Vector &grad) const |
void | GetGradients (ElementTransformation &tr, const IntegrationRule &ir, DenseMatrix &grad) const |
void | GetGradients (const int elem, const IntegrationRule &ir, DenseMatrix &grad) const |
void | GetVectorGradient (ElementTransformation &tr, DenseMatrix &grad) const |
void | GetElementAverages (GridFunction &avgs) const |
void | ImposeBounds (int i, const Vector &weights, const Vector &_lo, const Vector &_hi) |
void | ImposeBounds (int i, const Vector &weights, double _min=0.0, double _max=infinity()) |
void | RestrictConforming () |
void | ProjectGridFunction (const GridFunction &src) |
Project the src GridFunction to this GridFunction, both of which must be on the same mesh. More... | |
virtual void | ProjectCoefficient (Coefficient &coeff) |
void | ProjectCoefficient (Coefficient &coeff, Array< int > &dofs, int vd=0) |
void | ProjectCoefficient (VectorCoefficient &vcoeff) |
void | ProjectCoefficient (VectorCoefficient &vcoeff, Array< int > &dofs) |
void | ProjectCoefficient (Coefficient *coeff[]) |
virtual void | ProjectDiscCoefficient (VectorCoefficient &coeff) |
Project a discontinuous vector coefficient as a grid function on a continuous finite element space. The values in shared dofs are determined from the element with maximal attribute. More... | |
virtual void | ProjectDiscCoefficient (Coefficient &coeff, AvgType type) |
Projects a discontinuous coefficient so that the values in shared vdofs are computed by taking an average of the possible values. More... | |
virtual void | ProjectDiscCoefficient (VectorCoefficient &coeff, AvgType type) |
Projects a discontinuous vector coefficient so that the values in shared vdofs are computed by taking an average of the possible values. More... | |
void | ProjectBdrCoefficient (Coefficient &coeff, Array< int > &attr) |
Project a Coefficient on the GridFunction, modifying only DOFs on the boundary associated with the boundary attributes marked in the attr array. More... | |
virtual void | ProjectBdrCoefficient (VectorCoefficient &vcoeff, Array< int > &attr) |
Project a VectorCoefficient on the GridFunction, modifying only DOFs on the boundary associated with the boundary attributes marked in the attr array. More... | |
virtual void | ProjectBdrCoefficient (Coefficient *coeff[], Array< int > &attr) |
Project a set of Coefficients on the components of the GridFunction, modifying only DOFs on the boundary associated with the boundary attributed marked in the attr array. More... | |
void | ProjectBdrCoefficientNormal (VectorCoefficient &vcoeff, Array< int > &bdr_attr) |
virtual void | ProjectBdrCoefficientTangent (VectorCoefficient &vcoeff, Array< int > &bdr_attr) |
Project the tangential components of the given VectorCoefficient on the boundary. Only boundary attributes that are marked in bdr_attr are projected. Assumes ND-type VectorFE GridFunction. More... | |
virtual double | ComputeL2Error (Coefficient &exsol, const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeL2Error (Coefficient *exsol[], const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeL2Error (VectorCoefficient &exsol, const IntegrationRule *irs[]=NULL, Array< int > *elems=NULL) const |
virtual double | ComputeGradError (VectorCoefficient *exgrad, const IntegrationRule *irs[]=NULL) const |
Returns ||grad u_ex - grad u_h||_L2 for H1 or L2 elements. More... | |
virtual double | ComputeCurlError (VectorCoefficient *excurl, const IntegrationRule *irs[]=NULL) const |
Returns ||curl u_ex - curl u_h||_L2 for ND elements. More... | |
virtual double | ComputeDivError (Coefficient *exdiv, const IntegrationRule *irs[]=NULL) const |
Returns ||div u_ex - div u_h||_L2 for RT elements. More... | |
virtual double | ComputeDGFaceJumpError (Coefficient *exsol, Coefficient *ell_coeff, double Nu, const IntegrationRule *irs[]=NULL) const |
Returns the Face Jumps error for L2 elements. More... | |
virtual double | ComputeH1Error (Coefficient *exsol, VectorCoefficient *exgrad, Coefficient *ell_coef, double Nu, int norm_type) const |
virtual double | ComputeH1Error (Coefficient *exsol, VectorCoefficient *exgrad, const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeHDivError (VectorCoefficient *exsol, Coefficient *exdiv, const IntegrationRule *irs[]=NULL) const |
Returns the error measured in H(div)-norm for RT elements. More... | |
virtual double | ComputeHCurlError (VectorCoefficient *exsol, VectorCoefficient *excurl, const IntegrationRule *irs[]=NULL) const |
Returns the error measured in H(curl)-norm for ND elements. More... | |
virtual double | ComputeMaxError (Coefficient &exsol, const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeMaxError (Coefficient *exsol[], const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeMaxError (VectorCoefficient &exsol, const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeL1Error (Coefficient &exsol, const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeW11Error (Coefficient *exsol, VectorCoefficient *exgrad, int norm_type, Array< int > *elems=NULL, const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeL1Error (VectorCoefficient &exsol, const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeLpError (const double p, Coefficient &exsol, Coefficient *weight=NULL, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeElementLpErrors (const double p, Coefficient &exsol, Vector &error, Coefficient *weight=NULL, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeElementL1Errors (Coefficient &exsol, Vector &error, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeElementL2Errors (Coefficient &exsol, Vector &error, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeElementMaxErrors (Coefficient &exsol, Vector &error, const IntegrationRule *irs[]=NULL) const |
virtual double | ComputeLpError (const double p, VectorCoefficient &exsol, Coefficient *weight=NULL, VectorCoefficient *v_weight=NULL, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeElementLpErrors (const double p, VectorCoefficient &exsol, Vector &error, Coefficient *weight=NULL, VectorCoefficient *v_weight=NULL, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeElementL1Errors (VectorCoefficient &exsol, Vector &error, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeElementL2Errors (VectorCoefficient &exsol, Vector &error, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeElementMaxErrors (VectorCoefficient &exsol, Vector &error, const IntegrationRule *irs[]=NULL) const |
virtual void | ComputeFlux (BilinearFormIntegrator &blfi, GridFunction &flux, bool wcoef=true, int subdomain=-1) |
GridFunction & | operator= (double value) |
Redefine '=' for GridFunction = constant. More... | |
GridFunction & | operator= (const Vector &v) |
Copy the data from v. More... | |
virtual void | Update () |
Transform by the Space UpdateMatrix (e.g., on Mesh change). More... | |
FiniteElementSpace * | FESpace () |
const FiniteElementSpace * | FESpace () const |
virtual void | SetSpace (FiniteElementSpace *f) |
Associate a new FiniteElementSpace with the GridFunction. More... | |
virtual void | MakeRef (FiniteElementSpace *f, double *v) |
Make the GridFunction reference external data on a new FiniteElementSpace. More... | |
virtual void | MakeRef (FiniteElementSpace *f, Vector &v, int v_offset) |
Make the GridFunction reference external data on a new FiniteElementSpace. More... | |
void | MakeTRef (FiniteElementSpace *f, double *tv) |
Associate a new FiniteElementSpace and new true-dof data with the GridFunction. More... | |
void | MakeTRef (FiniteElementSpace *f, Vector &tv, int tv_offset) |
Associate a new FiniteElementSpace and new true-dof data with the GridFunction. More... | |
virtual void | Save (std::ostream &out) const |
Save the GridFunction to an output stream. More... | |
virtual void | Save (adios2stream &out, const std::string &variable_name, const adios2stream::data_type type=adios2stream::data_type::point_data) const |
Save the GridFunction to a binary output stream using adios2 bp format. More... | |
void | SaveVTK (std::ostream &out, const std::string &field_name, int ref) |
Write the GridFunction in VTK format. Note that Mesh::PrintVTK must be called first. The parameter ref > 0 must match the one used in Mesh::PrintVTK. More... | |
void | SaveSTL (std::ostream &out, int TimesToRefine=1) |
Write the GridFunction in STL format. Note that the mesh dimension must be 2 and that quad elements will be broken into two triangles. More... | |
virtual | ~GridFunction () |
Destroys grid function. More... | |
Element index Get Value Methods | |
These methods take an element index and return the interpolated value of the field at a given reference point within the element.
| |
virtual double | GetValue (int i, const IntegrationPoint &ip, int vdim=1) const |
virtual void | GetVectorValue (int i, const IntegrationPoint &ip, Vector &val) const |
Element Index Get Values Methods | |
These are convenience methods for repeatedly calling GetValue for multiple points within a given element. The GetValues methods are optimized and should perform better than repeatedly calling GetValue. The GetVectorValues method simply calls GetVectorValue repeatedly.
| |
void | GetValues (int i, const IntegrationRule &ir, Vector &vals, int vdim=1) const |
void | GetValues (int i, const IntegrationRule &ir, Vector &vals, DenseMatrix &tr, int vdim=1) const |
void | GetVectorValues (int i, const IntegrationRule &ir, DenseMatrix &vals, DenseMatrix &tr) const |
ElementTransformation Get Value Methods | |
These member functions are designed for use within GridFunctionCoefficient objects. These can be used with ElementTransformation objects coming from either Mesh::GetElementTransformation() or Mesh::GetBdrElementTransformation().
| |
virtual double | GetValue (ElementTransformation &T, const IntegrationPoint &ip, int comp=0, Vector *tr=NULL) const |
virtual void | GetVectorValue (ElementTransformation &T, const IntegrationPoint &ip, Vector &val, Vector *tr=NULL) const |
ElementTransformation Get Values Methods | |
These are convenience methods for repeatedly calling GetValue for multiple points within a given element. They work by calling either the ElementTransformation or FaceElementTransformations versions described above. Consequently, these methods should not be expected to run faster than calling the above methods in an external loop.
| |
void | GetValues (ElementTransformation &T, const IntegrationRule &ir, Vector &vals, int comp=0, DenseMatrix *tr=NULL) const |
void | GetVectorValues (ElementTransformation &T, const IntegrationRule &ir, DenseMatrix &vals, DenseMatrix *tr=NULL) const |
Face Index Get Values Methods | |
These methods are designed to work with Discontinuous Galerkin basis functions. They compute field values on the interface between elements, or on boundary elements, by interpolating the field in a neighboring element. The side argument indices which neighboring element should be used: 0, 1, or 2 (automatically chosen).
| |
int | GetFaceValues (int i, int side, const IntegrationRule &ir, Vector &vals, DenseMatrix &tr, int vdim=1) const |
int | GetFaceVectorValues (int i, int side, const IntegrationRule &ir, DenseMatrix &vals, DenseMatrix &tr) const |
Public Member Functions inherited from mfem::Vector | |
Vector () | |
Default constructor for Vector. Sets size = 0 and data = NULL. More... | |
Vector (const Vector &) | |
Copy constructor. Allocates a new data array and copies the data. More... | |
Vector (int s) | |
Creates vector of size s. More... | |
Vector (double *_data, int _size) | |
Creates a vector referencing an array of doubles, owned by someone else. More... | |
Vector (int size_, MemoryType mt) | |
Create a Vector of size size_ using MemoryType mt. More... | |
void | UseDevice (bool use_dev) const |
Enable execution of Vector operations using the mfem::Device. More... | |
bool | UseDevice () const |
Return the device flag of the Memory object used by the Vector. More... | |
void | Load (std::istream **in, int np, int *dim) |
Reads a vector from multiple files. More... | |
void | Load (std::istream &in, int Size) |
Load a vector from an input stream. More... | |
void | Load (std::istream &in) |
Load a vector from an input stream, reading the size from the stream. More... | |
void | SetSize (int s) |
Resize the vector to size s. More... | |
void | SetSize (int s, MemoryType mt) |
Resize the vector to size s using MemoryType mt. More... | |
void | SetSize (int s, Vector &v) |
Resize the vector to size s using the MemoryType of v. More... | |
void | SetData (double *d) |
void | SetDataAndSize (double *d, int s) |
Set the Vector data and size. More... | |
void | NewDataAndSize (double *d, int s) |
Set the Vector data and size, deleting the old data, if owned. More... | |
void | NewMemoryAndSize (const Memory< double > &mem, int s, bool own_mem) |
Reset the Vector to use the given external Memory mem and size s. More... | |
void | MakeRef (Vector &base, int offset, int size) |
Reset the Vector to be a reference to a sub-vector of base. More... | |
void | MakeRef (Vector &base, int offset) |
Reset the Vector to be a reference to a sub-vector of base without changing its current size. More... | |
void | MakeDataOwner () const |
Set the Vector data (host pointer) ownership flag. More... | |
void | Destroy () |
Destroy a vector. More... | |
int | Size () const |
Returns the size of the vector. More... | |
int | Capacity () const |
Return the size of the currently allocated data array. More... | |
double * | GetData () const |
Return a pointer to the beginning of the Vector data. More... | |
operator double * () | |
Conversion to double * . More... | |
operator const double * () const | |
Conversion to const double * . More... | |
Memory< double > & | GetMemory () |
Return a reference to the Memory object used by the Vector. More... | |
const Memory< double > & | GetMemory () const |
Return a reference to the Memory object used by the Vector, const version. More... | |
void | SyncMemory (const Vector &v) |
Update the memory location of the vector to match v. More... | |
void | SyncAliasMemory (const Vector &v) |
Update the alias memory location of the vector to match v. More... | |
bool | OwnsData () const |
Read the Vector data (host pointer) ownership flag. More... | |
void | StealData (double **p) |
Changes the ownership of the data; after the call the Vector is empty. More... | |
double * | StealData () |
Changes the ownership of the data; after the call the Vector is empty. More... | |
double & | Elem (int i) |
Access Vector entries. Index i = 0 .. size-1. More... | |
const double & | Elem (int i) const |
Read only access to Vector entries. Index i = 0 .. size-1. More... | |
double & | operator() (int i) |
Access Vector entries using () for 0-based indexing. More... | |
const double & | operator() (int i) const |
Read only access to Vector entries using () for 0-based indexing. More... | |
double | operator* (const double *) const |
Dot product with a double * array. More... | |
double | operator* (const Vector &v) const |
Return the inner-product. More... | |
Vector & | operator= (const double *v) |
Copy Size() entries from v. More... | |
Vector & | operator= (const Vector &v) |
Copy assignment. More... | |
Vector & | operator= (double value) |
Redefine '=' for vector = constant. More... | |
Vector & | operator*= (double c) |
Vector & | operator/= (double c) |
Vector & | operator-= (double c) |
Vector & | operator-= (const Vector &v) |
Vector & | operator+= (double c) |
Vector & | operator+= (const Vector &v) |
Vector & | Add (const double a, const Vector &Va) |
(*this) += a * Va More... | |
Vector & | Set (const double a, const Vector &x) |
(*this) = a * x More... | |
void | SetVector (const Vector &v, int offset) |
void | Neg () |
(*this) = -(*this) More... | |
void | Swap (Vector &other) |
Swap the contents of two Vectors. More... | |
void | median (const Vector &lo, const Vector &hi) |
v = median(v,lo,hi) entrywise. Implementation assumes lo <= hi. More... | |
void | GetSubVector (const Array< int > &dofs, Vector &elemvect) const |
Extract entries listed in dofs to the output Vector elemvect. More... | |
void | GetSubVector (const Array< int > &dofs, double *elem_data) const |
Extract entries listed in dofs to the output array elem_data. More... | |
void | SetSubVector (const Array< int > &dofs, const double value) |
Set the entries listed in dofs to the given value. More... | |
void | SetSubVector (const Array< int > &dofs, const Vector &elemvect) |
Set the entries listed in dofs to the values given in the elemvect Vector. Negative dof values cause the -dof-1 position in this Vector to receive the -val from elemvect. More... | |
void | SetSubVector (const Array< int > &dofs, double *elem_data) |
Set the entries listed in dofs to the values given the , elem_data array. Negative dof values cause the -dof-1 position in this Vector to receive the -val from elem_data. More... | |
void | AddElementVector (const Array< int > &dofs, const Vector &elemvect) |
Add elements of the elemvect Vector to the entries listed in dofs. Negative dof values cause the -dof-1 position in this Vector to add the -val from elemvect. More... | |
void | AddElementVector (const Array< int > &dofs, double *elem_data) |
Add elements of the elem_data array to the entries listed in dofs. Negative dof values cause the -dof-1 position in this Vector to add the -val from elem_data. More... | |
void | AddElementVector (const Array< int > &dofs, const double a, const Vector &elemvect) |
Add times the elements of the elemvect Vector to the entries listed in dofs. Negative dof values cause the -dof-1 position in this Vector to add the -a*val from elemvect. More... | |
void | SetSubVectorComplement (const Array< int > &dofs, const double val) |
Set all vector entries NOT in the dofs Array to the given val. More... | |
void | Print (std::ostream &out=mfem::out, int width=8) const |
Prints vector to stream out. More... | |
void | Print (adios2stream &out, const std::string &variable_name) const |
void | Print_HYPRE (std::ostream &out) const |
Prints vector to stream out in HYPRE_Vector format. More... | |
void | Randomize (int seed=0) |
Set random values in the vector. More... | |
double | Norml2 () const |
Returns the l2 norm of the vector. More... | |
double | Normlinf () const |
Returns the l_infinity norm of the vector. More... | |
double | Norml1 () const |
Returns the l_1 norm of the vector. More... | |
double | Normlp (double p) const |
Returns the l_p norm of the vector. More... | |
double | Max () const |
Returns the maximal element of the vector. More... | |
double | Min () const |
Returns the minimal element of the vector. More... | |
double | Sum () const |
Return the sum of the vector entries. More... | |
double | DistanceSquaredTo (const double *p) const |
Compute the square of the Euclidean distance to another vector. More... | |
double | DistanceTo (const double *p) const |
Compute the Euclidean distance to another vector. More... | |
int | CheckFinite () const |
Count the number of entries in the Vector for which isfinite is false, i.e. the entry is a NaN or +/-Inf. More... | |
virtual | ~Vector () |
Destroys vector. More... | |
const double * | Read (bool on_dev=true) const |
Shortcut for mfem::Read(vec.GetMemory(), vec.Size(), on_dev). More... | |
const double * | HostRead () const |
Shortcut for mfem::Read(vec.GetMemory(), vec.Size(), false). More... | |
double * | Write (bool on_dev=true) |
Shortcut for mfem::Write(vec.GetMemory(), vec.Size(), on_dev). More... | |
double * | HostWrite () |
Shortcut for mfem::Write(vec.GetMemory(), vec.Size(), false). More... | |
double * | ReadWrite (bool on_dev=true) |
Shortcut for mfem::ReadWrite(vec.GetMemory(), vec.Size(), on_dev). More... | |
double * | HostReadWrite () |
Shortcut for mfem::ReadWrite(vec.GetMemory(), vec.Size(), false). More... | |
MFEM_DEPRECATED | Vector (N_Vector nv) |
(DEPRECATED) Construct a wrapper Vector from SUNDIALS N_Vector. More... | |
virtual MFEM_DEPRECATED N_Vector | ToNVector () |
(DEPRECATED) Return a new wrapper SUNDIALS N_Vector of type SUNDIALS_NVEC_SERIAL. More... | |
virtual MFEM_DEPRECATED void | ToNVector (N_Vector &nv, long global_length=0) |
Update an existing wrapper SUNDIALS N_Vector to point to this Vector. More... | |
Protected Member Functions | |
void | SaveSTLTri (std::ostream &out, double p1[], double p2[], double p3[]) |
void | GetVectorGradientHat (ElementTransformation &T, DenseMatrix &gh) const |
void | ProjectDeltaCoefficient (DeltaCoefficient &delta_coeff, double &integral) |
void | SumFluxAndCount (BilinearFormIntegrator &blfi, GridFunction &flux, Array< int > &counts, bool wcoef, int subdomain) |
void | ProjectDiscCoefficient (VectorCoefficient &coeff, Array< int > &dof_attr) |
void | Destroy () |
void | AccumulateAndCountZones (Coefficient &coeff, AvgType type, Array< int > &zones_per_vdof) |
Accumulates (depending on type) the values of coeff at all shared vdofs and counts in how many zones each vdof appears. More... | |
void | AccumulateAndCountZones (VectorCoefficient &vcoeff, AvgType type, Array< int > &zones_per_vdof) |
Accumulates (depending on type) the values of vcoeff at all shared vdofs and counts in how many zones each vdof appears. More... | |
void | AccumulateAndCountBdrValues (Coefficient *coeff[], VectorCoefficient *vcoeff, Array< int > &attr, Array< int > &values_counter) |
void | AccumulateAndCountBdrTangentValues (VectorCoefficient &vcoeff, Array< int > &bdr_attr, Array< int > &values_counter) |
void | ComputeMeans (AvgType type, Array< int > &zones_per_vdof) |
Protected Attributes | |
FiniteElementSpace * | fes |
FE space on which the grid function lives. Owned if fec is not NULL. More... | |
FiniteElementCollection * | fec |
Used when the grid function is read from a file. It can also be set explicitly, see MakeOwner(). More... | |
long | sequence |
Vector | t_vec |
Protected Attributes inherited from mfem::Vector | |
Memory< double > | data |
int | size |
Class for grid function - Vector with associated FE space.
Definition at line 30 of file gridfunc.hpp.
Enumerator | |
---|---|
ARITHMETIC | |
HARMONIC |
Definition at line 363 of file gridfunc.hpp.
|
inline |
Definition at line 74 of file gridfunc.hpp.
|
inline |
Copy constructor. The internal true-dof vector t_vec is not copied.
Definition at line 77 of file gridfunc.hpp.
|
inline |
Construct a GridFunction associated with the FiniteElementSpace *f.
Definition at line 82 of file gridfunc.hpp.
|
inline |
Construct a GridFunction using previously allocated array data.
The GridFunction does not assume ownership of data which is assumed to be of size at least f->GetVSize()
. Similar to the Vector constructor for externally allocated array, the pointer data can be NULL. The data array can be replaced later using the method SetData().
Definition at line 91 of file gridfunc.hpp.
mfem::GridFunction::GridFunction | ( | Mesh * | m, |
std::istream & | input | ||
) |
Construct a GridFunction on the given Mesh, using the data from input.
The content of input should be in the format created by the method Save(). The reconstructed FiniteElementSpace and FiniteElementCollection are owned by the GridFunction.
Definition at line 30 of file gridfunc.cpp.
mfem::GridFunction::GridFunction | ( | Mesh * | m, |
GridFunction * | gf_array[], | ||
int | num_pieces | ||
) |
Definition at line 64 of file gridfunc.cpp.
|
inlinevirtual |
Destroys grid function.
Definition at line 659 of file gridfunc.hpp.
|
protected |
Definition at line 2113 of file gridfunc.cpp.
|
protected |
Definition at line 1971 of file gridfunc.cpp.
|
protected |
Accumulates (depending on type) the values of coeff at all shared vdofs and counts in how many zones each vdof appears.
Definition at line 1875 of file gridfunc.cpp.
|
protected |
Accumulates (depending on type) the values of vcoeff at all shared vdofs and counts in how many zones each vdof appears.
Definition at line 1916 of file gridfunc.cpp.
|
virtual |
Returns ||curl u_ex - curl u_h||_L2 for ND elements.
Reimplemented in mfem::ParGridFunction.
Definition at line 2701 of file gridfunc.cpp.
|
virtual |
Returns the Face Jumps error for L2 elements.
Reimplemented in mfem::ParGridFunction.
Definition at line 2779 of file gridfunc.cpp.
|
virtual |
Returns ||div u_ex - div u_h||_L2 for RT elements.
Reimplemented in mfem::ParGridFunction.
Definition at line 2743 of file gridfunc.cpp.
|
inlinevirtual |
Definition at line 526 of file gridfunc.hpp.
|
inlinevirtual |
Definition at line 562 of file gridfunc.hpp.
|
inlinevirtual |
Definition at line 532 of file gridfunc.hpp.
|
inlinevirtual |
Definition at line 568 of file gridfunc.hpp.
|
virtual |
Compute the Lp error in each element of the mesh and store the results in the Vector error. The result should be of length number of elements, for example an L2 GridFunction of order zero using map type VALUE.
Definition at line 3154 of file gridfunc.cpp.
|
virtual |
Compute the Lp error in each element of the mesh and store the results in the Vector @ error. The result should be of length number of elements, for example an L2 GridFunction of order zero using map type VALUE.
Definition at line 3311 of file gridfunc.cpp.
|
inlinevirtual |
Definition at line 538 of file gridfunc.hpp.
|
inlinevirtual |
Definition at line 574 of file gridfunc.hpp.
|
virtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 285 of file gridfunc.cpp.
|
virtual |
Returns ||grad u_ex - grad u_h||_L2 for H1 or L2 elements.
Reimplemented in mfem::ParGridFunction.
Definition at line 2661 of file gridfunc.cpp.
|
virtual |
This method is kept for backward compatibility.
Returns either the H1-seminorm, or the DG face jumps error, or both depending on norm_type = 1, 2, 3. Additional arguments for the DG face jumps norm: ell_coeff: mesh-depended coefficient (weight) Nu: scalar constant weight
Reimplemented in mfem::ParGridFunction.
Definition at line 2887 of file gridfunc.cpp.
|
virtual |
Returns the error measured in H1-norm for H1 elements or in "broken" H1-norm for L2 elements
Reimplemented in mfem::ParGridFunction.
Definition at line 2900 of file gridfunc.cpp.
|
virtual |
Returns the error measured in H(curl)-norm for ND elements.
Reimplemented in mfem::ParGridFunction.
Definition at line 2918 of file gridfunc.cpp.
|
virtual |
Returns the error measured in H(div)-norm for RT elements.
Reimplemented in mfem::ParGridFunction.
Definition at line 2909 of file gridfunc.cpp.
|
inlinevirtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 501 of file gridfunc.hpp.
|
inlinevirtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 509 of file gridfunc.hpp.
|
inlinevirtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 431 of file gridfunc.hpp.
|
virtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 2567 of file gridfunc.cpp.
|
virtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 2620 of file gridfunc.cpp.
|
virtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 3089 of file gridfunc.cpp.
|
virtual |
When given a vector weight, compute the pointwise (scalar) error as the dot product of the vector error with the vector weight. Otherwise, the scalar error is the l_2 norm of the vector error.
Reimplemented in mfem::ParGridFunction.
Definition at line 3220 of file gridfunc.cpp.
|
inlinevirtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 486 of file gridfunc.hpp.
|
virtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 2927 of file gridfunc.cpp.
|
inlinevirtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 495 of file gridfunc.hpp.
Definition at line 2164 of file gridfunc.cpp.
|
virtual |
Definition at line 2983 of file gridfunc.cpp.
|
protected |
Definition at line 142 of file gridfunc.cpp.
|
inline |
Definition at line 595 of file gridfunc.hpp.
|
inline |
Definition at line 596 of file gridfunc.hpp.
void mfem::GridFunction::GetBdrValuesFrom | ( | const GridFunction & | orig_func | ) |
Definition at line 1103 of file gridfunc.cpp.
void mfem::GridFunction::GetCurl | ( | ElementTransformation & | tr, |
Vector & | curl | ||
) | const |
Definition at line 1445 of file gridfunc.cpp.
void mfem::GridFunction::GetDerivative | ( | int | comp, |
int | der_comp, | ||
GridFunction & | der | ||
) |
Definition at line 1280 of file gridfunc.cpp.
double mfem::GridFunction::GetDivergence | ( | ElementTransformation & | tr | ) | const |
Definition at line 1359 of file gridfunc.cpp.
void mfem::GridFunction::GetElementAverages | ( | GridFunction & | avgs | ) | const |
Compute \( (\int_{\Omega} (*this) \psi_i)/(\int_{\Omega} \psi_i) \), where \( \psi_i \) are the basis functions for the FE space of avgs. Both FE spaces should be scalar and on the same mesh.
Definition at line 1704 of file gridfunc.cpp.
int mfem::GridFunction::GetFaceValues | ( | int | i, |
int | side, | ||
const IntegrationRule & | ir, | ||
Vector & | vals, | ||
DenseMatrix & | tr, | ||
int | vdim = 1 |
||
) | const |
Compute a collection of scalar values from within the face indicated by the index i.
Definition at line 583 of file gridfunc.cpp.
int mfem::GridFunction::GetFaceVectorValues | ( | int | i, |
int | side, | ||
const IntegrationRule & | ir, | ||
DenseMatrix & | vals, | ||
DenseMatrix & | tr | ||
) | const |
Compute a collection of vector values from within the face indicated by the index i.
Definition at line 1023 of file gridfunc.cpp.
void mfem::GridFunction::GetGradient | ( | ElementTransformation & | tr, |
Vector & | grad | ||
) | const |
Definition at line 1547 of file gridfunc.cpp.
void mfem::GridFunction::GetGradients | ( | ElementTransformation & | tr, |
const IntegrationRule & | ir, | ||
DenseMatrix & | grad | ||
) | const |
Definition at line 1617 of file gridfunc.cpp.
|
inline |
Definition at line 317 of file gridfunc.hpp.
void mfem::GridFunction::GetHessians | ( | int | i, |
const IntegrationRule & | ir, | ||
DenseMatrix & | hess, | ||
int | vdim = 1 |
||
) | const |
Definition at line 527 of file gridfunc.cpp.
void mfem::GridFunction::GetHessians | ( | int | i, |
const IntegrationRule & | ir, | ||
DenseMatrix & | hess, | ||
DenseMatrix & | tr, | ||
int | vdim = 1 |
||
) | const |
Definition at line 570 of file gridfunc.cpp.
void mfem::GridFunction::GetLaplacians | ( | int | i, |
const IntegrationRule & | ir, | ||
Vector & | laps, | ||
int | vdim = 1 |
||
) | const |
Definition at line 488 of file gridfunc.cpp.
void mfem::GridFunction::GetLaplacians | ( | int | i, |
const IntegrationRule & | ir, | ||
Vector & | laps, | ||
DenseMatrix & | tr, | ||
int | vdim = 1 |
||
) | const |
Definition at line 515 of file gridfunc.cpp.
void mfem::GridFunction::GetNodalValues | ( | int | i, |
Array< double > & | nval, | ||
int | vdim = 1 |
||
) | const |
Returns the values in the vertices of i'th element for dimension vdim.
Definition at line 350 of file gridfunc.cpp.
void mfem::GridFunction::GetNodalValues | ( | Vector & | nval, |
int | vdim = 1 |
||
) | const |
Return the values as a vector on mesh vertices for dimension vdim.
Definition at line 1849 of file gridfunc.cpp.
void mfem::GridFunction::GetTrueDofs | ( | Vector & | tv | ) | const |
Extract the true-dofs from the GridFunction. If all dofs are true, then tv
will be set to point to the data of *this
.
Definition at line 321 of file gridfunc.cpp.
|
inline |
Read only access to the (optional) internal true-dof Vector.
Note that the returned Vector may be empty, if not previously allocated or set.
Definition at line 124 of file gridfunc.hpp.
|
inline |
Read and write access to the (optional) internal true-dof Vector.
Note that the returned Vector may be empty, if not previously allocated or set.
Definition at line 128 of file gridfunc.hpp.
|
virtual |
Return a scalar value from within the given element.
Reimplemented in mfem::ParGridFunction.
Definition at line 391 of file gridfunc.cpp.
|
virtual |
Return a scalar value from within the element indicated by the ElementTransformation Object.
Reimplemented in mfem::ParGridFunction.
Definition at line 692 of file gridfunc.cpp.
void mfem::GridFunction::GetValues | ( | int | i, |
const IntegrationRule & | ir, | ||
Vector & | vals, | ||
int | vdim = 1 |
||
) | const |
Compute a collection of scalar values from within the element indicated by the index i.
Definition at line 455 of file gridfunc.cpp.
void mfem::GridFunction::GetValues | ( | int | i, |
const IntegrationRule & | ir, | ||
Vector & | vals, | ||
DenseMatrix & | tr, | ||
int | vdim = 1 |
||
) | const |
Compute a collection of vector values from within the element indicated by the index i.
Definition at line 477 of file gridfunc.cpp.
void mfem::GridFunction::GetValues | ( | ElementTransformation & | T, |
const IntegrationRule & | ir, | ||
Vector & | vals, | ||
int | comp = 0 , |
||
DenseMatrix * | tr = NULL |
||
) | const |
Compute a collection of scalar values from within the element indicated by the ElementTransformation object.
Definition at line 810 of file gridfunc.cpp.
void mfem::GridFunction::GetValuesFrom | ( | const GridFunction & | orig_func | ) |
Definition at line 1066 of file gridfunc.cpp.
void mfem::GridFunction::GetVectorFieldNodalValues | ( | Vector & | val, |
int | comp | ||
) | const |
Definition at line 1209 of file gridfunc.cpp.
void mfem::GridFunction::GetVectorFieldValues | ( | int | i, |
const IntegrationRule & | ir, | ||
DenseMatrix & | vals, | ||
DenseMatrix & | tr, | ||
int | comp = 0 |
||
) | const |
Definition at line 1140 of file gridfunc.cpp.
void mfem::GridFunction::GetVectorGradient | ( | ElementTransformation & | tr, |
DenseMatrix & | grad | ||
) | const |
Definition at line 1642 of file gridfunc.cpp.
|
protected |
Definition at line 1340 of file gridfunc.cpp.
|
virtual |
Return a vector value from within the given element.
Reimplemented in mfem::ParGridFunction.
Definition at line 414 of file gridfunc.cpp.
|
virtual |
Return a vector value from within the element indicated by the ElementTransformation Object.
Reimplemented in mfem::ParGridFunction.
Definition at line 830 of file gridfunc.cpp.
void mfem::GridFunction::GetVectorValues | ( | int | i, |
const IntegrationRule & | ir, | ||
DenseMatrix & | vals, | ||
DenseMatrix & | tr | ||
) | const |
Definition at line 633 of file gridfunc.cpp.
void mfem::GridFunction::GetVectorValues | ( | ElementTransformation & | T, |
const IntegrationRule & | ir, | ||
DenseMatrix & | vals, | ||
DenseMatrix * | tr = NULL |
||
) | const |
Compute a collection of vector values from within the element indicated by the ElementTransformation object.
Definition at line 965 of file gridfunc.cpp.
void mfem::GridFunction::ImposeBounds | ( | int | i, |
const Vector & | weights, | ||
const Vector & | _lo, | ||
const Vector & | _hi | ||
) |
Impose the given bounds on the function's DOFs while preserving its local integral (described in terms of the given weights) on the i'th element through SLBPQ optimization. Intended to be used for discontinuous FE functions.
Definition at line 1778 of file gridfunc.cpp.
void mfem::GridFunction::ImposeBounds | ( | int | i, |
const Vector & | weights, | ||
double | _min = 0.0 , |
||
double | _max = infinity() |
||
) |
Definition at line 1805 of file gridfunc.cpp.
|
inline |
Make the GridFunction the owner of fec and fes.
If the new FiniteElementCollection, _fec, is NULL, ownership of fec and fes is taken away.
Definition at line 115 of file gridfunc.hpp.
|
virtual |
Make the GridFunction reference external data on a new FiniteElementSpace.
This method changes the FiniteElementSpace associated with the GridFunction and sets the pointer v as external data in the GridFunction.
Reimplemented in mfem::ParGridFunction.
Definition at line 188 of file gridfunc.cpp.
|
virtual |
Make the GridFunction reference external data on a new FiniteElementSpace.
This method changes the FiniteElementSpace associated with the GridFunction and sets the data of the Vector v (plus the v_offset) as external data in the GridFunction.
Reimplemented in mfem::ParGridFunction.
Definition at line 196 of file gridfunc.cpp.
void mfem::GridFunction::MakeTRef | ( | FiniteElementSpace * | f, |
double * | tv | ||
) |
Associate a new FiniteElementSpace and new true-dof data with the GridFunction.
Definition at line 206 of file gridfunc.cpp.
void mfem::GridFunction::MakeTRef | ( | FiniteElementSpace * | f, |
Vector & | tv, | ||
int | tv_offset | ||
) |
Associate a new FiniteElementSpace and new true-dof data with the GridFunction.
Definition at line 220 of file gridfunc.cpp.
|
inline |
Copy assignment. Only the data of the base class Vector is copied.
It is assumed that this object and rhs use FiniteElementSpaces that have the same size.
Definition at line 109 of file gridfunc.hpp.
GridFunction & mfem::GridFunction::operator= | ( | double | value | ) |
Redefine '=' for GridFunction = constant.
Definition at line 3404 of file gridfunc.cpp.
GridFunction & mfem::GridFunction::operator= | ( | const Vector & | v | ) |
Copy the data from v.
The size of v must be equal to the size of the associated FiniteElementSpace fes.
Definition at line 3410 of file gridfunc.cpp.
|
inline |
Definition at line 117 of file gridfunc.hpp.
|
inline |
Project a Coefficient on the GridFunction, modifying only DOFs on the boundary associated with the boundary attributes marked in the attr array.
Definition at line 399 of file gridfunc.hpp.
|
virtual |
Project a VectorCoefficient on the GridFunction, modifying only DOFs on the boundary associated with the boundary attributes marked in the attr array.
Reimplemented in mfem::ParGridFunction.
Definition at line 2445 of file gridfunc.cpp.
|
virtual |
Project a set of Coefficients on the components of the GridFunction, modifying only DOFs on the boundary associated with the boundary attributed marked in the attr array.
If a Coefficient pointer in the array coeff is NULL, that component will not be touched.
Reimplemented in mfem::ParGridFunction.
Definition at line 2462 of file gridfunc.cpp.
void mfem::GridFunction::ProjectBdrCoefficientNormal | ( | VectorCoefficient & | vcoeff, |
Array< int > & | bdr_attr | ||
) |
Project the normal component of the given VectorCoefficient on the boundary. Only boundary attributes that are marked in 'bdr_attr' are projected. Assumes RT-type VectorFE GridFunction.
Definition at line 2479 of file gridfunc.cpp.
|
virtual |
Project the tangential components of the given VectorCoefficient on the boundary. Only boundary attributes that are marked in bdr_attr are projected. Assumes ND-type VectorFE GridFunction.
Reimplemented in mfem::ParGridFunction.
Definition at line 2550 of file gridfunc.cpp.
|
virtual |
Reimplemented in mfem::ParGridFunction.
Definition at line 2252 of file gridfunc.cpp.
void mfem::GridFunction::ProjectCoefficient | ( | Coefficient & | coeff, |
Array< int > & | dofs, | ||
int | vd = 0 |
||
) |
Definition at line 2279 of file gridfunc.cpp.
void mfem::GridFunction::ProjectCoefficient | ( | VectorCoefficient & | vcoeff | ) |
Definition at line 2305 of file gridfunc.cpp.
void mfem::GridFunction::ProjectCoefficient | ( | VectorCoefficient & | vcoeff, |
Array< int > & | dofs | ||
) |
Definition at line 2320 of file gridfunc.cpp.
void mfem::GridFunction::ProjectCoefficient | ( | Coefficient * | coeff[] | ) |
Definition at line 2352 of file gridfunc.cpp.
|
protected |
Definition at line 2189 of file gridfunc.cpp.
|
protected |
Project a discontinuous vector coefficient in a continuous space and return in dof_attr the maximal attribute of the elements containing each degree of freedom.
Definition at line 2387 of file gridfunc.cpp.
|
virtual |
Project a discontinuous vector coefficient as a grid function on a continuous finite element space. The values in shared dofs are determined from the element with maximal attribute.
Reimplemented in mfem::ParGridFunction.
Definition at line 2419 of file gridfunc.cpp.
|
virtual |
Projects a discontinuous coefficient so that the values in shared vdofs are computed by taking an average of the possible values.
Reimplemented in mfem::ParGridFunction.
Definition at line 2425 of file gridfunc.cpp.
|
virtual |
Projects a discontinuous vector coefficient so that the values in shared vdofs are computed by taking an average of the possible values.
Reimplemented in mfem::ParGridFunction.
Definition at line 2436 of file gridfunc.cpp.
void mfem::GridFunction::ProjectGridFunction | ( | const GridFunction & | src | ) |
Project the src GridFunction to this GridFunction, both of which must be on the same mesh.
The current implementation assumes that all elements use the same projection matrix.
Definition at line 1734 of file gridfunc.cpp.
void mfem::GridFunction::ProjectVectorFieldOn | ( | GridFunction & | vec_field, |
int | comp = 0 |
||
) |
Definition at line 1240 of file gridfunc.cpp.
void mfem::GridFunction::ReorderByNodes | ( | ) |
For a vector grid function, makes sure that the ordering is byNODES.
Definition at line 1182 of file gridfunc.cpp.
void mfem::GridFunction::RestrictConforming | ( | ) |
On a non-conforming mesh, make sure the function lies in the conforming space by multiplying with R and then with P, the conforming restriction and prolongation matrices of the space, respectively.
Definition at line 1836 of file gridfunc.cpp.
|
virtual |
Save the GridFunction to an output stream.
Reimplemented in mfem::ParGridFunction.
Definition at line 3417 of file gridfunc.cpp.
|
virtual |
Save the GridFunction to a binary output stream using adios2 bp format.
Reimplemented in mfem::ParGridFunction.
Definition at line 3443 of file gridfunc.cpp.
void mfem::GridFunction::SaveSTL | ( | std::ostream & | out, |
int | TimesToRefine = 1 |
||
) |
Write the GridFunction in STL format. Note that the mesh dimension must be 2 and that quad elements will be broken into two triangles.
Definition at line 3550 of file gridfunc.cpp.
|
protected |
Definition at line 3530 of file gridfunc.cpp.
void mfem::GridFunction::SaveVTK | ( | std::ostream & | out, |
const std::string & | field_name, | ||
int | ref | ||
) |
Write the GridFunction in VTK format. Note that Mesh::PrintVTK must be called first. The parameter ref > 0 must match the one used in Mesh::PrintVTK.
Definition at line 3451 of file gridfunc.cpp.
|
virtual |
Set the GridFunction from the given true-dof vector.
Reimplemented in mfem::ParGridFunction.
Definition at line 336 of file gridfunc.cpp.
|
inline |
Shortcut for calling SetFromTrueDofs() with GetTrueVector() as argument.
Definition at line 142 of file gridfunc.hpp.
|
virtual |
Associate a new FiniteElementSpace with the GridFunction.
The GridFunction is resized using the SetSize() method.
Reimplemented in mfem::ParGridFunction.
Definition at line 180 of file gridfunc.cpp.
|
inline |
Shortcut for calling GetTrueDofs() with GetTrueVector() as argument.
Definition at line 136 of file gridfunc.hpp.
|
protected |
Definition at line 238 of file gridfunc.cpp.
|
virtual |
Transform by the Space UpdateMatrix (e.g., on Mesh change).
Reimplemented in mfem::ParGridFunction.
Definition at line 152 of file gridfunc.cpp.
int mfem::GridFunction::VectorDim | ( | ) | const |
Definition at line 300 of file gridfunc.cpp.
|
protected |
Used when the grid function is read from a file. It can also be set explicitly, see MakeOwner().
If not NULL, this pointer is owned by the GridFunction.
Definition at line 40 of file gridfunc.hpp.
|
protected |
FE space on which the grid function lives. Owned if fec is not NULL.
Definition at line 34 of file gridfunc.hpp.
|
protected |
Definition at line 42 of file gridfunc.hpp.
|
protected |
Optional, internal true-dof vector: if the FiniteElementSpace fes has a non-trivial (i.e. not NULL) prolongation operator, this Vector may hold associated true-dof values - either owned or external.
Definition at line 47 of file gridfunc.hpp.