12#ifndef MFEM_NONLININTEG
13#define MFEM_NONLININTEG
320 DenseMatrix DSh, DS, Jrt, Jpr, Jpt, P, PMatI, PMatO;
332 const Vector &elfun)
override;
355 DenseMatrix DSh_u, DS_u, J0i, J, J1, Finv, P, F, FinvT;
356 DenseMatrix PMatI_u, PMatO_u, PMatI_p, PMatO_p, Z, G, C;
384 DenseMatrix dshape, dshapex, EF, gradEF, ELV, elmat_comp;
439 DenseMatrix dshape, dshapex, EF, gradEF, ELV, elmat_comp;
462 DenseMatrix dshape, dshapex, EF, gradEF, ELV, elmat_comp;
Dynamic 2D array using row-major layout.
Base class Coefficients that optionally depend on space and time. These are used by the BilinearFormI...
ConvectiveVectorConvectionNLFIntegrator()=default
ConvectiveVectorConvectionNLFIntegrator(Coefficient &q)
void AssembleElementGrad(const FiniteElement &el, ElementTransformation &trans, const Vector &elfun, DenseMatrix &elmat) override
Assemble the local gradient matrix.
Data type dense matrix using column-major storage.
Structure representing the matrices/tensors needed to evaluate (in reference space) the values,...
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
Abstract class for all finite elements.
Structure for storing mesh geometric factors: coordinates, Jacobians, and determinants of the Jacobia...
Abstract class for hyperelastic models.
virtual void AssembleH(const DenseMatrix &Jpt, const DenseMatrix &DS, const real_t weight, DenseMatrix &A) const =0
Evaluate the derivative of the 1st Piola-Kirchhoff stress tensor and assemble its contribution to the...
virtual real_t EvalW(const DenseMatrix &Jpt) const =0
Evaluate the strain energy density function, W = W(Jpt).
ElementTransformation * Ttr
virtual ~HyperelasticModel()
virtual void EvalP(const DenseMatrix &Jpt, DenseMatrix &P) const =0
Evaluate the 1st Piola-Kirchhoff stress tensor, P = P(Jpt).
void SetTransformation(ElementTransformation &Ttr_)
void AssembleElementVector(const FiniteElement &el, ElementTransformation &Ttr, const Vector &elfun, Vector &elvect) override
Perform the local action of the NonlinearFormIntegrator.
real_t GetElementEnergy(const FiniteElement &el, ElementTransformation &Ttr, const Vector &elfun) override
Computes the integral of W(Jacobian(Trt)) over a target zone.
const IntegrationRule * GetDefaultIntegrationRule(const FiniteElement &trial_fe, const FiniteElement &test_fe, const ElementTransformation &trans) const override
Subclasses should override to choose a default integration rule.
HyperelasticNLFIntegrator(HyperelasticModel *m)
void AssembleElementGrad(const FiniteElement &el, ElementTransformation &Ttr, const Vector &elfun, DenseMatrix &elmat) override
Assemble the local gradient matrix.
real_t GetElementEnergy(const Array< const FiniteElement * > &el, ElementTransformation &Tr, const Array< const Vector * > &elfun) override
Compute the local energy.
void AssembleElementVector(const Array< const FiniteElement * > &el, ElementTransformation &Tr, const Array< const Vector * > &elfun, const Array< Vector * > &elvec) override
Perform the local action of the NonlinearFormIntegrator.
void AssembleElementGrad(const Array< const FiniteElement * > &el, ElementTransformation &Tr, const Array< const Vector * > &elfun, const Array2D< DenseMatrix * > &elmats) override
Assemble the local gradient matrix.
IncompressibleNeoHookeanIntegrator(Coefficient &mu_)
Class for an integration rule - an Array of IntegrationPoint.
This base class implements some shared functionality between linear and nonlinear form integrators.
void EvalP(const DenseMatrix &J, DenseMatrix &P) const override
Evaluate the 1st Piola-Kirchhoff stress tensor, P = P(Jpt).
void AssembleH(const DenseMatrix &J, const DenseMatrix &DS, const real_t weight, DenseMatrix &A) const override
Evaluate the derivative of the 1st Piola-Kirchhoff stress tensor and assemble its contribution to the...
real_t EvalW(const DenseMatrix &J) const override
Evaluate the strain energy density function, W = W(Jpt).
void AssembleH(const DenseMatrix &J, const DenseMatrix &DS, const real_t weight, DenseMatrix &A) const override
Evaluate the derivative of the 1st Piola-Kirchhoff stress tensor and assemble its contribution to the...
NeoHookeanModel(real_t mu_, real_t K_, real_t g_=1.0)
real_t EvalW(const DenseMatrix &J) const override
Evaluate the strain energy density function, W = W(Jpt).
void EvalP(const DenseMatrix &J, DenseMatrix &P) const override
Evaluate the 1st Piola-Kirchhoff stress tensor, P = P(Jpt).
NeoHookeanModel(Coefficient &mu_, Coefficient &K_, Coefficient *g_=NULL)
void AssembleElementGrad(const FiniteElement &el, ElementTransformation &trans, const Vector &elfun, DenseMatrix &elmat) override
Assemble the local gradient matrix.
SkewSymmetricVectorConvectionNLFIntegrator()=default
SkewSymmetricVectorConvectionNLFIntegrator(Coefficient &q)
void AddMultPA(const Vector &x, Vector &y) const override
Method for partially assembled action.
void AssembleElementVector(const FiniteElement &el, ElementTransformation &trans, const Vector &elfun, Vector &elvect) override
Perform the local action of the NonlinearFormIntegrator.
void AssemblePA(const FiniteElementSpace &fes) override
Method defining partial assembly.
VectorConvectionNLFIntegrator()=default
void AssembleMF(const FiniteElementSpace &fes) override
Method defining fully unassembled operator.
void AddMultMF(const Vector &x, Vector &y) const override
void AssembleElementGrad(const FiniteElement &el, ElementTransformation &trans, const Vector &elfun, DenseMatrix &elmat) override
Assemble the local gradient matrix.
static const IntegrationRule & GetRule(const FiniteElement &fe, const ElementTransformation &T)
const IntegrationRule * GetDefaultIntegrationRule(const FiniteElement &trial_fe, const FiniteElement &test_fe, const ElementTransformation &trans) const override
Subclasses should override to choose a default integration rule.
VectorConvectionNLFIntegrator(Coefficient &q)
void trans(const Vector &u, Vector &x)
MemoryType
Memory types supported by MFEM.