MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
mfem::spde Namespace Reference

Classes

struct  Boundary
 
class  GFTransformer
 Base class to transform a grid function. More...
 
class  LevelSetTransformer
 Level Set Transformer, 1 for u(x) >= threshold, 0 otherwise. More...
 
class  OffsetTransformer
 Adds an constant offset to a grid function, i.e. u(x) = u(x) + offset. More...
 
class  ScaleTransformer
 Transforms a grid function by scaling it by a constant factor. More...
 
class  SPDESolver
 
class  UniformGRFTransformer
 
class  Visualizer
 

Enumerations

enum class  BoundaryType {
  kNeumann , kDirichlet , kRobin , kPeriodic ,
  kUndefined
}
 

Functions

bool PrintOutput (const ParFiniteElementSpace *fespace_ptr, int print_level)
 
real_t IntegrateBC (const ParGridFunction &x, const Array< int > &bdr, real_t alpha, real_t beta, real_t gamma, real_t &glb_err)
 
real_t TransformToUniform (real_t x)
 
real_t ApplyLevelSetAtZero (real_t x)
 

Enumeration Type Documentation

◆ BoundaryType

enum class mfem::spde::BoundaryType
strong
Enumerator
kNeumann 
kDirichlet 
kRobin 
kPeriodic 
kUndefined 

Definition at line 24 of file spde_solver.hpp.

Function Documentation

◆ ApplyLevelSetAtZero()

real_t mfem::spde::ApplyLevelSetAtZero ( real_t x)

Definition at line 29 of file transformation.cpp.

◆ IntegrateBC()

real_t mfem::spde::IntegrateBC ( const ParGridFunction & x,
const Array< int > & bdr,
real_t alpha,
real_t beta,
real_t gamma,
real_t & glb_err )

IntegrateBC function from ex27p.cpp. For boundary verification. Compute the average value of alpha*n.Grad(sol) + beta*sol over the boundary attributes marked in bdr_marker. Also computes the L2 norm of alpha*n.Grad(sol) + beta*sol - gamma over the same boundary.

Definition at line 242 of file spde_solver.cpp.

◆ PrintOutput()

bool mfem::spde::PrintOutput ( const ParFiniteElementSpace * fespace_ptr,
int print_level )

Definition at line 26 of file spde_solver.cpp.

◆ TransformToUniform()

real_t mfem::spde::TransformToUniform ( real_t x)

This function effectively implements equation 19 of the paper (see header). \Phi [y(x)]

Definition at line 27 of file transformation.cpp.