MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
mortarintegrator.hpp
Go to the documentation of this file.
1// Copyright (c) 2010-2024, Lawrence Livermore National Security, LLC. Produced
2// at the Lawrence Livermore National Laboratory. All Rights reserved. See files
3// LICENSE and NOTICE for details. LLNL-CODE-806117.
4//
5// This file is part of the MFEM library. For more information and source code
6// availability visit https://mfem.org.
7//
8// MFEM is free software; you can redistribute it and/or modify it under the
9// terms of the BSD-3 license. We welcome feedback and contributions, see file
10// CONTRIBUTING.md for details.
11
12#ifndef MFEML2_MORTAR_INTEGRATOR_HPP
13#define MFEML2_MORTAR_INTEGRATOR_HPP
14
15#include "../fem.hpp"
16
17namespace mfem
18{
19
20/*!
21 * @brief Interface for mortar element assembly.
22 * The MortarIntegrator interface is used for performing Petrov-Galerkin
23 * finite element assembly on intersections between elements.
24 * The quadrature rules are to be generated by a cut algorithm (e.g.,
25 * mfem::Cut). The quadrature rules are defined in the respective trial and test
26 * reference frames. Trial and test spaces can be associated with different
27 * element shapes (e.g., triangles and quadrilaterals) and different polynomial
28 * orders (e.g., 1 and 4). This class is designed to work in conjunction with
29 * the MFEM/moonolith module but it can be used also for other applications.
30 */
32{
33public:
34 /*!
35 * @brief Implements the assembly routine
36 * @param trial is the master/source element
37 * @param trial_ir is the quadrature formula for evaluating quantities within
38 * the trial element
39 * @param trial_Trans the geometric transformation of the trial element
40 * @param test is the slave/destination element
41 * @param test_ir is the quadrature formula for evaluating quantities within
42 * the test element
43 * @param test_Trans the geometric transformation of the test element
44 * @param elemmat the result of the assembly
45 */
46 virtual void AssembleElementMatrix(const FiniteElement &trial,
47 const IntegrationRule &trial_ir,
48 ElementTransformation &trial_Trans,
49 const FiniteElement &test,
50 const IntegrationRule &test_ir,
51 ElementTransformation &test_Trans,
52 DenseMatrix &elemmat) = 0;
53
54 /*!
55 * @return the additional orders of quadrature required by the integrator.
56 * It is 0 by default, override method to change that.
57 */
58 virtual int GetQuadratureOrder() const { return 0; }
59
60 virtual ~MortarIntegrator() {}
61
62 /*!
63 * @return true if it uses vector fe and false otherwise
64 */
65 virtual bool is_vector_fe() const = 0;
66};
67
68/*!
69 * @brief Integrator for scalar finite elements
70 * $$ (u, v)_{L^2(\mathcal{T}_m \cap \mathcal{T}_s)}, u \in U(\mathcal{T}_m )
71 * and v \in V(\mathcal{T}_s ) $$
72 */
74{
75public:
76 void AssembleElementMatrix(const FiniteElement &trial,
77 const IntegrationRule &trial_ir,
78 ElementTransformation &trial_Trans,
79 const FiniteElement &test,
80 const IntegrationRule &test_ir,
81 ElementTransformation &test_Trans,
82 DenseMatrix &elemmat) override;
83
84 inline bool is_vector_fe() const override { return false; }
85};
86
87/*!
88 * @brief Integrator for vector finite elements. Experimental.
89 * $$ (u, v)_{L^2(\mathcal{T}_m \cap \mathcal{T}_s)}, u \in U(\mathcal{T}_m )
90 * and v \in V(\mathcal{T}_s ) $$
91 */
93{
94public:
95#ifndef MFEM_THREAD_SAFE
101#endif
102
103public:
104 VectorL2MortarIntegrator() { Init(NULL, NULL, NULL); }
105 VectorL2MortarIntegrator(Coefficient *_q) { Init(_q, NULL, NULL); }
108
109 void AssembleElementMatrix(const FiniteElement &trial,
110 const IntegrationRule &trial_ir,
111 ElementTransformation &trial_Trans,
112 const FiniteElement &test,
113 const IntegrationRule &test_ir,
114 ElementTransformation &test_Trans,
115 DenseMatrix &elemmat) override;
116
117 inline bool is_vector_fe() const override { return true; }
118
119private:
120 Coefficient *Q;
123
125 {
126 Q = q;
127 VQ = vq;
128 MQ = mq;
129 }
130};
131
132} // namespace mfem
133
134#endif // MFEML2_MORTAR_INTEGRATOR_HPP
Base class Coefficients that optionally depend on space and time. These are used by the BilinearFormI...
Data type dense matrix using column-major storage.
Definition densemat.hpp:24
Abstract class for all finite elements.
Definition fe_base.hpp:239
A class to initialize the size of a Tensor.
Definition dtensor.hpp:55
Class for an integration rule - an Array of IntegrationPoint.
Definition intrules.hpp:100
Integrator for scalar finite elements.
void AssembleElementMatrix(const FiniteElement &trial, const IntegrationRule &trial_ir, ElementTransformation &trial_Trans, const FiniteElement &test, const IntegrationRule &test_ir, ElementTransformation &test_Trans, DenseMatrix &elemmat) override
Implements the assembly routine.
bool is_vector_fe() const override
Base class for Matrix Coefficients that optionally depend on time and space.
Interface for mortar element assembly. The MortarIntegrator interface is used for performing Petrov-G...
virtual int GetQuadratureOrder() const
virtual void AssembleElementMatrix(const FiniteElement &trial, const IntegrationRule &trial_ir, ElementTransformation &trial_Trans, const FiniteElement &test, const IntegrationRule &test_ir, ElementTransformation &test_Trans, DenseMatrix &elemmat)=0
Implements the assembly routine.
virtual bool is_vector_fe() const =0
Base class for vector Coefficients that optionally depend on time and space.
Integrator for vector finite elements. Experimental.
VectorL2MortarIntegrator(VectorCoefficient *_vq)
VectorL2MortarIntegrator(MatrixCoefficient *_mq)
void AssembleElementMatrix(const FiniteElement &trial, const IntegrationRule &trial_ir, ElementTransformation &trial_Trans, const FiniteElement &test, const IntegrationRule &test_ir, ElementTransformation &test_Trans, DenseMatrix &elemmat) override
Implements the assembly routine.
Vector data type.
Definition vector.hpp:80