|
void | mfem::Add (const DenseMatrix &A, const DenseMatrix &B, real_t alpha, DenseMatrix &C) |
| C = A + alpha*B.
|
|
void | mfem::Add (real_t alpha, const real_t *A, real_t beta, const real_t *B, DenseMatrix &C) |
| C = alpha*A + beta*B.
|
|
void | mfem::Add (real_t alpha, const DenseMatrix &A, real_t beta, const DenseMatrix &B, DenseMatrix &C) |
| C = alpha*A + beta*B.
|
|
bool | mfem::LinearSolve (DenseMatrix &A, real_t *X, real_t TOL=1.e-9) |
| Solves the dense linear system, A * X = B for X
|
|
void | mfem::Mult (const DenseMatrix &b, const DenseMatrix &c, DenseMatrix &a) |
| Matrix matrix multiplication. A = B * C.
|
|
void | mfem::AddMult (const DenseMatrix &b, const DenseMatrix &c, DenseMatrix &a) |
| Matrix matrix multiplication. A += B * C.
|
|
void | mfem::AddMult_a (real_t alpha, const DenseMatrix &b, const DenseMatrix &c, DenseMatrix &a) |
| Matrix matrix multiplication. A += alpha * B * C.
|
|
void | mfem::CalcAdjugate (const DenseMatrix &a, DenseMatrix &adja) |
|
void | mfem::CalcAdjugateTranspose (const DenseMatrix &a, DenseMatrix &adjat) |
| Calculate the transposed adjugate of a matrix (for NxN matrices, N=1,2,3)
|
|
void | mfem::CalcInverse (const DenseMatrix &a, DenseMatrix &inva) |
|
void | mfem::CalcInverseTranspose (const DenseMatrix &a, DenseMatrix &inva) |
| Calculate the inverse transpose of a matrix (for NxN matrices, N=1,2,3)
|
|
void | mfem::CalcOrtho (const DenseMatrix &J, Vector &n) |
|
void | mfem::MultAAt (const DenseMatrix &a, DenseMatrix &aat) |
| Calculate the matrix A.At.
|
|
void | mfem::MultADAt (const DenseMatrix &A, const Vector &D, DenseMatrix &ADAt) |
| ADAt = A D A^t, where D is diagonal.
|
|
void | mfem::AddMultADAt (const DenseMatrix &A, const Vector &D, DenseMatrix &ADAt) |
| ADAt += A D A^t, where D is diagonal.
|
|
void | mfem::MultABt (const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt) |
| Multiply a matrix A with the transpose of a matrix B: A*Bt.
|
|
void | mfem::MultADBt (const DenseMatrix &A, const Vector &D, const DenseMatrix &B, DenseMatrix &ADBt) |
| ADBt = A D B^t, where D is diagonal.
|
|
void | mfem::AddMultABt (const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt) |
| ABt += A * B^t.
|
|
void | mfem::AddMultADBt (const DenseMatrix &A, const Vector &D, const DenseMatrix &B, DenseMatrix &ADBt) |
| ADBt = A D B^t, where D is diagonal.
|
|
void | mfem::AddMult_a_ABt (real_t a, const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt) |
| ABt += a * A * B^t.
|
|
void | mfem::MultAtB (const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &AtB) |
| Multiply the transpose of a matrix A with a matrix B: At*B.
|
|
void | mfem::AddMultAtB (const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &AtB) |
| AtB += A^t * B.
|
|
void | mfem::AddMult_a_AtB (real_t a, const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &AtB) |
| AtB += a * A^t * B.
|
|
void | mfem::AddMult_a_AAt (real_t a, const DenseMatrix &A, DenseMatrix &AAt) |
| AAt += a * A * A^t.
|
|
void | mfem::Mult_a_AAt (real_t a, const DenseMatrix &A, DenseMatrix &AAt) |
| AAt = a * A * A^t.
|
|
void | mfem::MultVVt (const Vector &v, DenseMatrix &vvt) |
| Make a matrix from a vector V.Vt.
|
|
void | mfem::MultVWt (const Vector &v, const Vector &w, DenseMatrix &VWt) |
|
void | mfem::AddMultVWt (const Vector &v, const Vector &w, DenseMatrix &VWt) |
| VWt += v w^t.
|
|
void | mfem::AddMultVVt (const Vector &v, DenseMatrix &VWt) |
| VVt += v v^t.
|
|
void | mfem::AddMult_a_VWt (const real_t a, const Vector &v, const Vector &w, DenseMatrix &VWt) |
| VWt += a * v w^t.
|
|
void | mfem::AddMult_a_VVt (const real_t a, const Vector &v, DenseMatrix &VVt) |
| VVt += a * v v^t.
|
|
void | mfem::RAP (const DenseMatrix &A, const DenseMatrix &P, DenseMatrix &RAP) |
|
void | mfem::RAP (const DenseMatrix &Rt, const DenseMatrix &A, const DenseMatrix &P, DenseMatrix &RAP) |
|
void | mfem::BatchLUFactor (DenseTensor &Mlu, Array< int > &P, const real_t TOL=0.0) |
| Compute the LU factorization of a batch of matrices.
|
|
void | mfem::BatchLUSolve (const DenseTensor &Mlu, const Array< int > &P, Vector &X) |
| Solve batch linear systems.
|
|