MFEM v4.8.0
Finite element discretization library
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
mfem::eltrans::Lagrange Class Reference

1D Lagrange basis from [0, 1] More...

#include <eltrans_basis.hpp>

Public Member Functions

real_t MFEM_HOST_DEVICE eval (real_t x, int i) const
 Evaluates the i'th Lagrange polynomial at x
 
void MFEM_HOST_DEVICE eval_d1 (real_t &p, real_t &d1, real_t x, int i) const
 
void MFEM_HOST_DEVICE eval_d2 (real_t &p, real_t &d1, real_t &d2, real_t x, int i) const
 

Public Attributes

const real_tz
 interpolant node locations, in reference space
 
int pN
 number of points
 

Detailed Description

1D Lagrange basis from [0, 1]

Definition at line 108 of file eltrans_basis.hpp.

Member Function Documentation

◆ eval()

real_t MFEM_HOST_DEVICE mfem::eltrans::Lagrange::eval ( real_t x,
int i ) const
inline

Evaluates the i'th Lagrange polynomial at x

Definition at line 118 of file eltrans_basis.hpp.

◆ eval_d1()

void MFEM_HOST_DEVICE mfem::eltrans::Lagrange::eval_d1 ( real_t & p,
real_t & d1,
real_t x,
int i ) const
inline

Evaluates the i'th Lagrange polynomial and its first derivative at x

Definition at line 137 of file eltrans_basis.hpp.

◆ eval_d2()

void MFEM_HOST_DEVICE mfem::eltrans::Lagrange::eval_d2 ( real_t & p,
real_t & d1,
real_t & d2,
real_t x,
int i ) const
inline

Evaluates the i'th Lagrange polynomial and its first and second derivatives at x

Definition at line 159 of file eltrans_basis.hpp.

Member Data Documentation

◆ pN

int mfem::eltrans::Lagrange::pN

number of points

Definition at line 115 of file eltrans_basis.hpp.

◆ z

const real_t* mfem::eltrans::Lagrange::z

interpolant node locations, in reference space

Definition at line 112 of file eltrans_basis.hpp.


The documentation for this class was generated from the following file: