MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
mfem::ComplexUMFPackSolver Class Reference

Interface with UMFPack solver specialized for ComplexSparseMatrix This approach avoids forming a monolithic SparseMatrix which leads to increased memory and flops. More...

#include <complex_operator.hpp>

Inheritance diagram for mfem::ComplexUMFPackSolver:
[legend]
Collaboration diagram for mfem::ComplexUMFPackSolver:
[legend]

Public Member Functions

 ComplexUMFPackSolver (bool use_long_ints_=false, bool transa_=false)
 For larger matrices, if the solver fails, set the parameter use_long_ints_ = true.
 
 ComplexUMFPackSolver (ComplexSparseMatrix &A, bool use_long_ints_=false, bool transa_=false)
 Factorize the given ComplexSparseMatrix using the defaults. For larger matrices, if the solver fails, set the parameter use_long_ints_ = true.
 
virtual void SetOperator (const Operator &op)
 Factorize the given Operator op which must be a ComplexSparseMatrix.
 
void SetPrintLevel (int print_lvl)
 
void SetTransposeSolve (bool transa_)
 
virtual void Mult (const Vector &b, Vector &x) const
 This is solving the system A x = b.
 
virtual void MultTranspose (const Vector &b, Vector &x) const
 This is solving the system: A^H x = b (when transa = false) This is equivalent to solving the transpose block system for the case of Convention = HERMITIAN A^T x = b (when transa = true) This is equivalent to solving the transpose block system for the case of Convention = BLOCK_SYMMETRIC.
 
virtual ~ComplexUMFPackSolver ()
 
- Public Member Functions inherited from mfem::Solver
 Solver (int s=0, bool iter_mode=false)
 Initialize a square Solver with size s.
 
 Solver (int h, int w, bool iter_mode=false)
 Initialize a Solver with height h and width w.
 
- Public Member Functions inherited from mfem::Operator
void InitTVectors (const Operator *Po, const Operator *Ri, const Operator *Pi, Vector &x, Vector &b, Vector &X, Vector &B) const
 Initializes memory for true vectors of linear system.
 
 Operator (int s=0)
 Construct a square Operator with given size s (default 0).
 
 Operator (int h, int w)
 Construct an Operator with the given height (output size) and width (input size).
 
int Height () const
 Get the height (size of output) of the Operator. Synonym with NumRows().
 
int NumRows () const
 Get the number of rows (size of output) of the Operator. Synonym with Height().
 
int Width () const
 Get the width (size of input) of the Operator. Synonym with NumCols().
 
int NumCols () const
 Get the number of columns (size of input) of the Operator. Synonym with Width().
 
virtual MemoryClass GetMemoryClass () const
 Return the MemoryClass preferred by the Operator.
 
virtual void AddMult (const Vector &x, Vector &y, const real_t a=1.0) const
 Operator application: y+=A(x) (default) or y+=a*A(x).
 
virtual void AddMultTranspose (const Vector &x, Vector &y, const real_t a=1.0) const
 Operator transpose application: y+=A^t(x) (default) or y+=a*A^t(x).
 
virtual void ArrayMult (const Array< const Vector * > &X, Array< Vector * > &Y) const
 Operator application on a matrix: Y=A(X).
 
virtual void ArrayMultTranspose (const Array< const Vector * > &X, Array< Vector * > &Y) const
 Action of the transpose operator on a matrix: Y=A^t(X).
 
virtual void ArrayAddMult (const Array< const Vector * > &X, Array< Vector * > &Y, const real_t a=1.0) const
 Operator application on a matrix: Y+=A(X) (default) or Y+=a*A(X).
 
virtual void ArrayAddMultTranspose (const Array< const Vector * > &X, Array< Vector * > &Y, const real_t a=1.0) const
 Operator transpose application on a matrix: Y+=A^t(X) (default) or Y+=a*A^t(X).
 
virtual OperatorGetGradient (const Vector &x) const
 Evaluate the gradient operator at the point x. The default behavior in class Operator is to generate an error.
 
virtual void AssembleDiagonal (Vector &diag) const
 Computes the diagonal entries into diag. Typically, this operation only makes sense for linear Operators. In some cases, only an approximation of the diagonal is computed.
 
virtual const OperatorGetProlongation () const
 Prolongation operator from linear algebra (linear system) vectors, to input vectors for the operator. NULL means identity.
 
virtual const OperatorGetRestriction () const
 Restriction operator from input vectors for the operator to linear algebra (linear system) vectors. NULL means identity.
 
virtual const OperatorGetOutputProlongation () const
 Prolongation operator from linear algebra (linear system) vectors, to output vectors for the operator. NULL means identity.
 
virtual const OperatorGetOutputRestrictionTranspose () const
 Transpose of GetOutputRestriction, directly available in this form to facilitate matrix-free RAP-type operators.
 
virtual const OperatorGetOutputRestriction () const
 Restriction operator from output vectors for the operator to linear algebra (linear system) vectors. NULL means identity.
 
void FormLinearSystem (const Array< int > &ess_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B, int copy_interior=0)
 Form a constrained linear system using a matrix-free approach.
 
void FormRectangularLinearSystem (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B)
 Form a column-constrained linear system using a matrix-free approach.
 
virtual void RecoverFEMSolution (const Vector &X, const Vector &b, Vector &x)
 Reconstruct a solution vector x (e.g. a GridFunction) from the solution X of a constrained linear system obtained from Operator::FormLinearSystem() or Operator::FormRectangularLinearSystem().
 
void FormSystemOperator (const Array< int > &ess_tdof_list, Operator *&A)
 Return in A a parallel (on truedofs) version of this square operator.
 
void FormRectangularSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Operator *&A)
 Return in A a parallel (on truedofs) version of this rectangular operator (including constraints).
 
void FormDiscreteOperator (Operator *&A)
 Return in A a parallel (on truedofs) version of this rectangular operator.
 
void PrintMatlab (std::ostream &out, int n, int m=0) const
 Prints operator with input size n and output size m in Matlab format.
 
virtual void PrintMatlab (std::ostream &out) const
 Prints operator in Matlab format.
 
virtual ~Operator ()
 Virtual destructor.
 
Type GetType () const
 Return the type ID of the Operator class.
 

Public Attributes

real_t Control [UMFPACK_CONTROL]
 
real_t Info [UMFPACK_INFO]
 
- Public Attributes inherited from mfem::Solver
bool iterative_mode
 If true, use the second argument of Mult() as an initial guess.
 

Protected Member Functions

void Init ()
 
- Protected Member Functions inherited from mfem::Operator
void FormConstrainedSystemOperator (const Array< int > &ess_tdof_list, ConstrainedOperator *&Aout)
 see FormSystemOperator()
 
void FormRectangularConstrainedSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, RectangularConstrainedOperator *&Aout)
 see FormRectangularSystemOperator()
 
OperatorSetupRAP (const Operator *Pi, const Operator *Po)
 Returns RAP Operator of this, using input/output Prolongation matrices Pi corresponds to "P", Po corresponds to "Rt".
 

Protected Attributes

bool use_long_ints
 
bool transa
 
ComplexSparseMatrixmat
 
void * Numeric
 
SuiteSparse_long * AI
 
SuiteSparse_long * AJ
 
- Protected Attributes inherited from mfem::Operator
int height
 Dimension of the output / number of rows in the matrix.
 
int width
 Dimension of the input / number of columns in the matrix.
 

Additional Inherited Members

- Public Types inherited from mfem::Operator
enum  DiagonalPolicy { DIAG_ZERO , DIAG_ONE , DIAG_KEEP }
 Defines operator diagonal policy upon elimination of rows and/or columns. More...
 
enum  Type {
  ANY_TYPE , MFEM_SPARSEMAT , Hypre_ParCSR , PETSC_MATAIJ ,
  PETSC_MATIS , PETSC_MATSHELL , PETSC_MATNEST , PETSC_MATHYPRE ,
  PETSC_MATGENERIC , Complex_Operator , MFEM_ComplexSparseMat , Complex_Hypre_ParCSR ,
  Complex_DenseMat , MFEM_Block_Matrix , MFEM_Block_Operator
}
 Enumeration defining IDs for some classes derived from Operator. More...
 

Detailed Description

Interface with UMFPack solver specialized for ComplexSparseMatrix This approach avoids forming a monolithic SparseMatrix which leads to increased memory and flops.

Definition at line 185 of file complex_operator.hpp.

Constructor & Destructor Documentation

◆ ComplexUMFPackSolver() [1/2]

mfem::ComplexUMFPackSolver::ComplexUMFPackSolver ( bool use_long_ints_ = false,
bool transa_ = false )
inline

For larger matrices, if the solver fails, set the parameter use_long_ints_ = true.

Definition at line 203 of file complex_operator.hpp.

◆ ComplexUMFPackSolver() [2/2]

mfem::ComplexUMFPackSolver::ComplexUMFPackSolver ( ComplexSparseMatrix & A,
bool use_long_ints_ = false,
bool transa_ = false )
inline

Factorize the given ComplexSparseMatrix using the defaults. For larger matrices, if the solver fails, set the parameter use_long_ints_ = true.

Definition at line 208 of file complex_operator.hpp.

◆ ~ComplexUMFPackSolver()

mfem::ComplexUMFPackSolver::~ComplexUMFPackSolver ( )
virtual

Definition at line 497 of file complex_operator.cpp.

Member Function Documentation

◆ Init()

void mfem::ComplexUMFPackSolver::Init ( )
protected

Definition at line 259 of file complex_operator.cpp.

◆ Mult()

void mfem::ComplexUMFPackSolver::Mult ( const Vector & b,
Vector & x ) const
virtual

This is solving the system A x = b.

Implements mfem::Operator.

Definition at line 377 of file complex_operator.cpp.

◆ MultTranspose()

void mfem::ComplexUMFPackSolver::MultTranspose ( const Vector & b,
Vector & x ) const
virtual

This is solving the system: A^H x = b (when transa = false) This is equivalent to solving the transpose block system for the case of Convention = HERMITIAN A^T x = b (when transa = true) This is equivalent to solving the transpose block system for the case of Convention = BLOCK_SYMMETRIC.

Reimplemented from mfem::Operator.

Definition at line 434 of file complex_operator.cpp.

◆ SetOperator()

void mfem::ComplexUMFPackSolver::SetOperator ( const Operator & op)
virtual

Factorize the given Operator op which must be a ComplexSparseMatrix.

The factorization uses the parameters set in the Control data member.

Note
This method calls SparseMatrix::SortColumnIndices() for real and imag parts of the ComplexSparseMatrix, modifying the matrices if the column indices are not already sorted.

Implements mfem::Solver.

Definition at line 274 of file complex_operator.cpp.

◆ SetPrintLevel()

void mfem::ComplexUMFPackSolver::SetPrintLevel ( int print_lvl)
inline

Definition at line 222 of file complex_operator.hpp.

◆ SetTransposeSolve()

void mfem::ComplexUMFPackSolver::SetTransposeSolve ( bool transa_)
inline

Definition at line 225 of file complex_operator.hpp.

Member Data Documentation

◆ AI

SuiteSparse_long* mfem::ComplexUMFPackSolver::AI
protected

Definition at line 193 of file complex_operator.hpp.

◆ AJ

SuiteSparse_long * mfem::ComplexUMFPackSolver::AJ
protected

Definition at line 193 of file complex_operator.hpp.

◆ Control

real_t mfem::ComplexUMFPackSolver::Control[UMFPACK_CONTROL]

Definition at line 198 of file complex_operator.hpp.

◆ Info

real_t mfem::ComplexUMFPackSolver::Info[UMFPACK_INFO]
mutable

Definition at line 199 of file complex_operator.hpp.

◆ mat

ComplexSparseMatrix* mfem::ComplexUMFPackSolver::mat
protected

Definition at line 190 of file complex_operator.hpp.

◆ Numeric

void* mfem::ComplexUMFPackSolver::Numeric
protected

Definition at line 192 of file complex_operator.hpp.

◆ transa

bool mfem::ComplexUMFPackSolver::transa
protected

Definition at line 189 of file complex_operator.hpp.

◆ use_long_ints

bool mfem::ComplexUMFPackSolver::use_long_ints
protected

Definition at line 188 of file complex_operator.hpp.


The documentation for this class was generated from the following files: