MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
mfem::AverageAccelerationSolver Class Reference

The classical midpoint method. More...

#include <ode.hpp>

Inheritance diagram for mfem::AverageAccelerationSolver:
[legend]
Collaboration diagram for mfem::AverageAccelerationSolver:
[legend]

Public Member Functions

 AverageAccelerationSolver ()
 
- Public Member Functions inherited from mfem::GeneralizedAlpha2Solver
 GeneralizedAlpha2Solver (real_t rho_inf=1.0)
 
void PrintProperties (std::ostream &out=mfem::out)
 
void Init (SecondOrderTimeDependentOperator &f_) override
 Associate a TimeDependentOperator with the ODE solver.
 
void Step (Vector &x, Vector &dxdt, real_t &t, real_t &dt) override
 Perform a time step from time t [in] to time t [out] based on the requested step size dt [in].
 
int GetMaxStateSize () override
 Function for getting and setting the state vectors.
 
int GetStateSize () override
 
const VectorGetStateVector (int i) override
 
void GetStateVector (int i, Vector &state) override
 
void SetStateVector (int i, Vector &state) override
 
- Public Member Functions inherited from mfem::SecondOrderODESolver
 SecondOrderODESolver ()
 
virtual void Run (Vector &x, Vector &dxdt, real_t &t, real_t &dt, real_t tf)
 Perform time integration from time t [in] to time tf [in].
 
virtual ~SecondOrderODESolver ()
 

Additional Inherited Members

- Protected Attributes inherited from mfem::GeneralizedAlpha2Solver
Vector xa
 
Vector va
 
Vector aa
 
Vector d2xdt2
 
real_t alpha_f
 
real_t alpha_m
 
real_t beta
 
real_t gamma
 
int nstate
 
- Protected Attributes inherited from mfem::SecondOrderODESolver
SecondOrderTimeDependentOperatorf
 Pointer to the associated TimeDependentOperator.
 
MemoryType mem_type
 

Detailed Description

The classical midpoint method.

Definition at line 806 of file ode.hpp.

Constructor & Destructor Documentation

◆ AverageAccelerationSolver()

mfem::AverageAccelerationSolver::AverageAccelerationSolver ( )
inline

Definition at line 809 of file ode.hpp.


The documentation for this class was generated from the following file: