46 class ReducedSystemOperator;
73 ReducedSystemOperator *reduced_oper;
87 double visc,
double mu,
double K);
93 virtual void ImplicitSolve(
const double dt,
const Vector &x,
Vector &k);
95 double ElasticEnergy(
const Vector &x)
const;
96 double KineticEnergy(
const Vector &v)
const;
99 virtual ~HyperelasticOperator();
106 class ReducedSystemOperator :
public Operator
120 void SetParameters(
double dt_,
const Vector *v_,
const Vector *x_);
128 virtual ~ReducedSystemOperator();
134 class ElasticEnergyCoefficient :
public Coefficient
143 : model(m), x(x_) { }
145 virtual ~ElasticEnergyCoefficient() { }
154 bool init_vis =
false);
157 int main(
int argc,
char *argv[])
160 const char *mesh_file =
"../data/beam-quad.mesh";
163 int ode_solver_type = 3;
164 double t_final = 300.0;
169 bool visualization =
true;
173 args.
AddOption(&mesh_file,
"-m",
"--mesh",
174 "Mesh file to use.");
175 args.
AddOption(&ref_levels,
"-r",
"--refine",
176 "Number of times to refine the mesh uniformly.");
178 "Order (degree) of the finite elements.");
179 args.
AddOption(&ode_solver_type,
"-s",
"--ode-solver",
180 "ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3,\n\t"
181 " 11 - Forward Euler, 12 - RK2,\n\t"
182 " 13 - RK3 SSP, 14 - RK4."
183 " 22 - Implicit Midpoint Method,\n\t"
184 " 23 - SDIRK23 (A-stable), 24 - SDIRK34");
185 args.
AddOption(&t_final,
"-tf",
"--t-final",
186 "Final time; start time is 0.");
187 args.
AddOption(&dt,
"-dt",
"--time-step",
189 args.
AddOption(&visc,
"-v",
"--viscosity",
190 "Viscosity coefficient.");
191 args.
AddOption(&mu,
"-mu",
"--shear-modulus",
192 "Shear modulus in the Neo-Hookean hyperelastic model.");
193 args.
AddOption(&K,
"-K",
"--bulk-modulus",
194 "Bulk modulus in the Neo-Hookean hyperelastic model.");
195 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
196 "--no-visualization",
197 "Enable or disable GLVis visualization.");
198 args.
AddOption(&vis_steps,
"-vs",
"--visualization-steps",
199 "Visualize every n-th timestep.");
210 Mesh *mesh =
new Mesh(mesh_file, 1, 1);
217 switch (ode_solver_type)
225 case 12: ode_solver =
new RK2Solver(0.5);
break;
227 case 14: ode_solver =
new RK4Solver;
break;
234 cout <<
"Unknown ODE solver type: " << ode_solver_type <<
'\n';
242 for (
int lev = 0; lev < ref_levels; lev++)
257 cout <<
"Number of velocity/deformation unknowns: " << fe_size << endl;
260 fe_offset[1] = fe_size;
261 fe_offset[2] = 2*fe_size;
290 HyperelasticOperator oper(fespace, ess_bdr, visc, mu, K);
295 char vishost[] =
"localhost";
297 vis_v.
open(vishost, visport);
300 visualize(vis_v, mesh, &x, &v,
"Velocity",
true);
301 vis_w.
open(vishost, visport);
304 oper.GetElasticEnergyDensity(x, w);
306 visualize(vis_w, mesh, &x, &w,
"Elastic energy density",
true);
312 cout <<
"initial elastic energy (EE) = " << ee0 << endl;
313 cout <<
"initial kinetic energy (KE) = " << ke0 << endl;
314 cout <<
"initial total energy (TE) = " << (ee0 + ke0) << endl;
318 ode_solver->
Init(oper);
322 bool last_step =
false;
323 for (
int ti = 1; !last_step; ti++)
325 double dt_real = min(dt, t_final - t);
327 ode_solver->
Step(vx, t, dt_real);
329 last_step = (t >= t_final - 1e-8*dt);
331 if (last_step || (ti % vis_steps) == 0)
336 cout <<
"step " << ti <<
", t = " << t <<
", EE = " << ee <<
", KE = "
337 << ke <<
", ΔTE = " << (ee+ke)-(ee0+ke0) << endl;
345 oper.GetElasticEnergyDensity(x, w);
358 ofstream mesh_ofs(
"deformed.mesh");
359 mesh_ofs.precision(8);
360 mesh->
Print(mesh_ofs);
362 ofstream velo_ofs(
"velocity.sol");
363 velo_ofs.precision(8);
365 ofstream ee_ofs(
"elastic_energy.sol");
367 oper.GetElasticEnergyDensity(x, w);
380 GridFunction *field,
const char *field_name,
bool init_vis)
392 out <<
"solution\n" << *mesh << *field;
398 out <<
"window_size 800 800\n";
399 out <<
"window_title '" << field_name <<
"'\n";
406 out <<
"autoscale value\n";
413 ReducedSystemOperator::ReducedSystemOperator(
415 :
Operator(M_->Height()), M(M_), S(S_), H(H_), Jacobian(NULL),
416 dt(0.0), v(NULL), x(NULL), w(height), z(height)
419 void ReducedSystemOperator::SetParameters(
double dt_,
const Vector *v_,
422 dt = dt_; v = v_; x = x_;
435 Operator &ReducedSystemOperator::GetGradient(
const Vector &k)
const
438 Jacobian =
Add(1.0, M->SpMat(), dt, S->SpMat());
442 Jacobian->
Add(dt*dt, *grad_H);
446 ReducedSystemOperator::~ReducedSystemOperator()
456 M(&fespace), S(&fespace), H(&fespace),
457 viscosity(visc), z(height/2)
459 const double rel_tol = 1e-8;
460 const int skip_zero_entries = 0;
462 const double ref_density = 1.0;
465 M.Assemble(skip_zero_entries);
467 fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
469 M.FormSystemMatrix(ess_tdof_list, tmp);
471 M_solver.iterative_mode =
false;
472 M_solver.SetRelTol(rel_tol);
473 M_solver.SetAbsTol(0.0);
474 M_solver.SetMaxIter(30);
475 M_solver.SetPrintLevel(0);
476 M_solver.SetPreconditioner(M_prec);
477 M_solver.SetOperator(M.SpMat());
481 H.SetEssentialTrueDofs(ess_tdof_list);
485 S.Assemble(skip_zero_entries);
486 S.FormSystemMatrix(ess_tdof_list, tmp);
488 reduced_oper =
new ReducedSystemOperator(&M, &S, &H);
490 #ifndef MFEM_USE_SUITESPARSE
505 newton_solver.SetSolver(*J_solver);
506 newton_solver.SetOperator(*reduced_oper);
507 newton_solver.SetPrintLevel(1);
508 newton_solver.SetRelTol(rel_tol);
509 newton_solver.SetAbsTol(0.0);
510 newton_solver.SetMaxIter(10);
523 if (viscosity != 0.0)
528 M_solver.Mult(z, dv_dt);
533 void HyperelasticOperator::ImplicitSolve(
const double dt,
548 reduced_oper->SetParameters(dt, &v, &x);
550 newton_solver.Mult(zero, dv_dt);
551 MFEM_VERIFY(newton_solver.GetConverged(),
"Newton solver did not converge.");
552 add(v, dt, dv_dt, dx_dt);
555 double HyperelasticOperator::ElasticEnergy(
const Vector &x)
const
557 return H.GetEnergy(x);
560 double HyperelasticOperator::KineticEnergy(
const Vector &v)
const
562 return 0.5*M.InnerProduct(v, v);
565 void HyperelasticOperator::GetElasticEnergyDensity(
568 ElasticEnergyCoefficient w_coeff(*model, x);
572 HyperelasticOperator::~HyperelasticOperator()
584 model.SetTransformation(T);
587 return model.EvalW(J)/J.Det();
601 const double s = 0.1/64.;
604 v(dim-1) = s*x(0)*x(0)*(8.0-x(0));
void visualize(ostream &out, Mesh *mesh, GridFunction *deformed_nodes, GridFunction *field, const char *field_name=NULL, bool init_vis=false)
double Eval(ElementTransformation &T, const IntegrationPoint &ip, double t)
Evaluate the coefficient in the element described by T at the point ip at time t. ...
void Add(const int i, const int j, const double a)
void InitialDeformation(const Vector &x, Vector &y)
virtual void Print(std::ostream &out=mfem::out) const
Conjugate gradient method.
Class for grid function - Vector with associated FE space.
Data type for scaled Jacobi-type smoother of sparse matrix.
A class to handle Vectors in a block fashion.
void SetFromTrueVector()
Shortcut for calling SetFromTrueDofs() with GetTrueVector() as argument.
Subclass constant coefficient.
Base abstract class for first order time dependent operators.
void SwapNodes(GridFunction *&nodes, int &own_nodes_)
void Mult(const Table &A, const Table &B, Table &C)
C = A * B (as boolean matrices)
virtual void Step(Vector &x, double &t, double &dt)=0
Perform a time step from time t [in] to time t [out] based on the requested step size dt [in]...
virtual void Init(TimeDependentOperator &f)
Associate a TimeDependentOperator with the ODE solver.
Data type dense matrix using column-major storage.
int Size() const
Returns the size of the vector.
Abstract class for solving systems of ODEs: dx/dt = f(x,t)
bool iterative_mode
If true, use the second argument of Mult() as an initial guess.
int main(int argc, char *argv[])
Backward Euler ODE solver. L-stable.
double * GetData() const
Return a pointer to the beginning of the Vector data.
void add(const Vector &v1, const Vector &v2, Vector &v)
void InitialVelocity(const Vector &x, Vector &v)
Direct sparse solver using UMFPACK.
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
void Add(const DenseMatrix &A, const DenseMatrix &B, double alpha, DenseMatrix &C)
C = A + alpha*B.
void SetTrueVector()
Shortcut for calling GetTrueDofs() with GetTrueVector() as argument.
virtual void SetPreconditioner(Solver &pr)
This should be called before SetOperator.
void SetPrintLevel(int print_lvl)
Mesh * GetMesh() const
Returns the mesh.
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
void MakeTRef(FiniteElementSpace *f, double *tv)
Associate a new FiniteElementSpace and new true-dof data with the GridFunction.
void SetMaxIter(int max_it)
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
Newton's method for solving F(x)=b for a given operator F.
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
void PrintUsage(std::ostream &out) const
const Vector & GetTrueVector() const
Read only access to the (optional) internal true-dof Vector.
int SpaceDimension() const
The classical explicit forth-order Runge-Kutta method, RK4.
void SetAbsTol(double atol)
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
void SetRelTol(double rtol)
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
Base class Coefficient that may optionally depend on time.
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Third-order, strong stability preserving (SSP) Runge-Kutta method.
void GetVectorGradient(ElementTransformation &tr, DenseMatrix &grad) const
Implicit midpoint method. A-stable, not L-stable.
Class for integration point with weight.
void PrintOptions(std::ostream &out) const
virtual void ProjectCoefficient(Coefficient &coeff)
Abstract class for hyperelastic models.
int open(const char hostname[], int port)
void GetNodes(Vector &node_coord) const
Arbitrary order H1-conforming (continuous) finite elements.
OutStream out(std::cout)
Global stream used by the library for standard output. Initially it uses the same std::streambuf as s...
The classical forward Euler method.
Vector & GetBlock(int i)
Get the i-th vector in the block.
Arbitrary order "L2-conforming" discontinuous finite elements.
void Neg()
(*this) = -(*this)