15 #include "../config/config.hpp"
16 #include "../general/globals.hpp"
36 void FNorm(
double &scale_factor,
double &scaled_fnorm2)
const;
67 data.
Wrap(d, h*w,
false);
75 void Reset(
double *d,
int h,
int w)
96 inline double *
Data()
const
97 {
return const_cast<double*
>((
const double*)data);}
112 inline const double &
operator()(
int i,
int j)
const;
118 double Trace()
const;
121 virtual double &
Elem(
int i,
int j);
124 virtual const double &
Elem(
int i,
int j)
const;
127 void Mult(
const double *x,
double *y)
const;
151 double InnerProduct(
const double *x,
const double *y)
const;
168 {
return InnerProduct((
const double *)x, (
const double *)y); }
187 void Set(
double alpha,
const double *A);
218 void Norm2(
double *v)
const;
224 double FNorm()
const {
double s, n2;
FNorm(s, n2);
return s*sqrt(n2); }
227 double FNorm2()
const {
double s, n2;
FNorm(s, n2);
return s*s*n2; }
235 { Eigensystem(ev, &evect); }
239 { Eigensystem(ev, &evect); }
244 { Eigensystem(b, ev); }
248 { Eigensystem(b, ev, &evect); }
253 { Eigensystem(b, ev, &evect); }
256 int Rank(
double tol)
const;
273 void SetRow(
int r,
const double* row);
276 void SetCol(
int c,
const double* col);
281 void SetRow(
int row,
double value);
283 void SetCol(
int col,
double value);
293 void Diag(
double c,
int n);
295 void Diag(
double *diag,
int n);
330 int row_offset,
int col_offset);
332 void CopyMNDiag(
double c,
int n,
int row_offset,
int col_offset);
334 void CopyMNDiag(
double *diag,
int n,
int row_offset,
int col_offset);
370 const double *
Read(
bool on_dev =
true)
const
398 void Add(
const DenseMatrix &A,
const DenseMatrix &B,
399 double alpha, DenseMatrix &C);
402 void Add(
double alpha,
const double *A,
403 double beta,
const double *B, DenseMatrix &C);
406 void Add(
double alpha,
const DenseMatrix &A,
407 double beta,
const DenseMatrix &B, DenseMatrix &C);
423 bool LinearSolve(DenseMatrix& A,
double* X,
double TOL = 1.e-9);
426 void Mult(
const DenseMatrix &
b,
const DenseMatrix &c, DenseMatrix &
a);
429 void AddMult(
const DenseMatrix &
b,
const DenseMatrix &c, DenseMatrix &
a);
432 void AddMult_a(
double alpha,
const DenseMatrix &
b,
const DenseMatrix &c,
445 void CalcInverse(
const DenseMatrix &
a, DenseMatrix &inva);
453 void CalcOrtho(
const DenseMatrix &J, Vector &n);
456 void MultAAt(
const DenseMatrix &
a, DenseMatrix &aat);
459 void MultADAt(
const DenseMatrix &A,
const Vector &D, DenseMatrix &ADAt);
462 void AddMultADAt(
const DenseMatrix &A,
const Vector &D, DenseMatrix &ADAt);
465 void MultABt(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &ABt);
468 void MultADBt(
const DenseMatrix &A,
const Vector &D,
469 const DenseMatrix &B, DenseMatrix &ADBt);
472 void AddMultABt(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &ABt);
475 void AddMultADBt(
const DenseMatrix &A,
const Vector &D,
476 const DenseMatrix &B, DenseMatrix &ADBt);
479 void AddMult_a_ABt(
double a,
const DenseMatrix &A,
const DenseMatrix &B,
483 void MultAtB(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &AtB);
486 void AddMult_a_AAt(
double a,
const DenseMatrix &A, DenseMatrix &AAt);
489 void Mult_a_AAt(
double a,
const DenseMatrix &A, DenseMatrix &AAt);
492 void MultVVt(
const Vector &v, DenseMatrix &vvt);
494 void MultVWt(
const Vector &v,
const Vector &w, DenseMatrix &VWt);
497 void AddMultVWt(
const Vector &v,
const Vector &w, DenseMatrix &VWt);
500 void AddMultVVt(
const Vector &v, DenseMatrix &VWt);
503 void AddMult_a_VWt(
const double a,
const Vector &v,
const Vector &w,
507 void AddMult_a_VVt(
const double a,
const Vector &v, DenseMatrix &VVt);
517 #ifdef MFEM_USE_LAPACK
541 bool Factor(
int m,
double TOL = 0.0);
545 double Det(
int m)
const;
549 void Mult(
int m,
int n,
double *X)
const;
553 void LSolve(
int m,
int n,
double *X)
const;
557 void USolve(
int m,
int n,
double *X)
const;
561 void Solve(
int m,
int n,
double *X)
const;
565 void RightSolve(
int m,
int n,
double *X)
const;
572 static void SubMult(
int m,
int n,
int r,
const double *A21,
573 const double *X1,
double *X2);
585 void BlockFactor(
int m,
int n,
double *A12,
double *A21,
double *A22)
const;
603 double *B1,
double *B2)
const;
612 const double *X2,
double *Y1)
const;
677 #ifdef MFEM_USE_LAPACK
705 #ifdef MFEM_USE_LAPACK
748 : Mk(NULL, other.Mk.height, other.Mk.width), nk(other.nk)
774 tdata.
New(i*j*k, mt);
782 tdata.
Wrap(ext_data, i*j*k,
false);
790 MFEM_ASSERT_INDEX_IN_RANGE(k, 0,
SizeK());
799 MFEM_ASSERT_INDEX_IN_RANGE(i, 0,
SizeI());
800 MFEM_ASSERT_INDEX_IN_RANGE(j, 0,
SizeJ());
801 MFEM_ASSERT_INDEX_IN_RANGE(k, 0,
SizeK());
807 MFEM_ASSERT_INDEX_IN_RANGE(i, 0,
SizeI());
808 MFEM_ASSERT_INDEX_IN_RANGE(j, 0,
SizeJ());
809 MFEM_ASSERT_INDEX_IN_RANGE(k, 0,
SizeK());
815 MFEM_ASSERT_INDEX_IN_RANGE(k, 0,
SizeK());
819 double *
Data() {
return tdata; }
821 const double *
Data()
const {
return tdata; }
836 const double *
Read(
bool on_dev =
true)
const
867 MFEM_ASSERT(data && i >= 0 && i < height && j >= 0 && j <
width,
"");
873 MFEM_ASSERT(data && i >= 0 && i < height && j >= 0 && j <
width,
"");
int Size() const
For backward compatibility define Size to be synonym of Width()
void Symmetrize()
(*this) = 1/2 ((*this) + (*this)^t)
void MultABt(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
Multiply a matrix A with the transpose of a matrix B: A*Bt.
DenseMatrix & operator-=(const DenseMatrix &m)
void SymmetricScaling(const Vector &s)
SymmetricScaling this = diag(sqrt(s)) * this * diag(sqrt(s))
void SquareRootInverse()
Replaces the current matrix with its square root inverse.
int CheckFinite(const double *v, const int n)
void AddMultVWt(const Vector &v, const Vector &w, DenseMatrix &VWt)
VWt += v w^t.
void Mult(DenseMatrix &X) const
Multiply the inverse matrix by another matrix: X <- A^{-1} X.
DenseMatrix & operator*=(double c)
void GetDiag(Vector &d) const
Returns the diagonal of the matrix.
void SetCol(int c, const double *col)
void UseExternalData(double *ext_data, int i, int j, int k)
DenseTensor & operator=(double c)
Sets the tensor elements equal to constant c.
void MultVWt(const Vector &v, const Vector &w, DenseMatrix &VWt)
double * HostWrite()
Shortcut for mfem::Write(GetMemory(), TotalSize(), false).
Memory< double > & GetMemory()
void SetRow(int r, const double *row)
void InvRightScaling(const Vector &s)
InvRightScaling: this = this * diag(1./s);.
const DenseMatrix & operator()(int k) const
void Eigenvalues(Vector &ev)
Compute eigenvalues of A x = ev x where A = *this.
void SingularValues(Vector &sv) const
void Delete()
Delete the owned pointers. The Memory is not reset by this method, i.e. it will, generally, not be Empty() after this call.
DenseMatrix & operator()(int k)
void Eigensystem(DenseMatrix &b, Vector &ev, DenseMatrix &evect)
void Mult(const Table &A, const Table &B, Table &C)
C = A * B (as boolean matrices)
int Width() const
Get the width (size of input) of the Operator. Synonym with NumCols().
void BlockFactor(int m, int n, double *A12, double *A21, double *A22) const
void BlockBackSolve(int m, int n, int r, const double *U12, const double *X2, double *Y1) const
double InnerProduct(const double *x, const double *y) const
Compute y^t A x.
void CalcAdjugate(const DenseMatrix &a, DenseMatrix &adja)
const double * Read(bool on_dev=true) const
Shortcut for mfem::Read( GetMemory(), TotalSize(), on_dev).
T * Write(Memory< T > &mem, int size, bool on_dev=true)
Get a pointer for write access to mem with the mfem::Device's DeviceMemoryClass, if on_dev = true...
void AddMult(const Table &elem_dof, const Vector &x, Vector &y) const
void TestInversion()
Invert and print the numerical conditioning of the inversion.
Data type dense matrix using column-major storage.
void CopyRows(const DenseMatrix &A, int row1, int row2)
Copy rows row1 through row2 from A to *this.
void SetSize(int i, int j, int k)
void Eval(DenseMatrix &M)
const double * Data() const
Abstract data type for matrix inverse.
void AddMult_a_ABt(double a, const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
ABt += a * A * B^t.
double * HostReadWrite()
Shortcut for mfem::ReadWrite(GetMemory(), TotalSize(), false).
void GetInverseMatrix(DenseMatrix &Ainv) const
Compute and return the inverse matrix in Ainv.
void Factor()
Factor the current DenseMatrix, *a.
void CopyFrom(const Memory &src, int size)
Copy size entries from src to *this.
void GetInverseMatrix(int m, double *X) const
Assuming L.U = P.A factored data of size (m x m), compute X <- A^{-1}.
double * GetData() const
Returns the matrix data array.
const Memory< double > & GetMemory() const
void CalcOrtho(const DenseMatrix &J, Vector &n)
DenseMatrix & operator=(double c)
Sets the matrix elements equal to constant c.
void Set(double alpha, const double *A)
Set the matrix to alpha * A, assuming that A has the same dimensions as the matrix and uses column-ma...
int Capacity() const
Return the size of the allocated memory.
void Mult_a_AAt(double a, const DenseMatrix &A, DenseMatrix &AAt)
AAt = a * A * A^t.
MemoryType GetMemoryType() const
Return a MemoryType that is currently valid. If both the host and the device pointers are currently v...
static void SubMult(int m, int n, int r, const double *A21, const double *X1, double *X2)
const Vector & Eigenvector(int i)
virtual void Print(std::ostream &out=mfem::out, int width_=4) const
Prints matrix to stream out.
virtual void Mult(const Vector &x, Vector &y) const
Matrix vector multiplication with the inverse of dense matrix.
const double & operator()(int i, int j, int k) const
void Set(double alpha, const DenseMatrix &A)
Set the matrix to alpha * A.
void Add(const DenseMatrix &A, const DenseMatrix &B, double alpha, DenseMatrix &C)
C = A + alpha*B.
double & operator()(int i, int j)
Returns reference to a_{ij}.
void Wrap(T *ptr, int size, bool own)
Wrap an externally allocated host pointer, ptr with the current host memory type returned by MemoryMa...
void USolve(int m, int n, double *X) const
double FNorm() const
Compute the Frobenius norm of the matrix.
const double * HostRead() const
Shortcut for mfem::Read(GetMemory(), TotalSize(), false).
void MultTranspose(const double *x, double *y) const
Multiply a vector with the transpose matrix.
void CalcAdjugateTranspose(const DenseMatrix &a, DenseMatrix &adjat)
Calculate the transposed adjugate of a matrix (for NxN matrices, N=1,2,3)
double & operator()(int i, int j, int k)
void RightSolve(int m, int n, double *X) const
void AddMult(const DenseMatrix &b, const DenseMatrix &c, DenseMatrix &a)
Matrix matrix multiplication. A += B * C.
double operator*(const DenseMatrix &m) const
Matrix inner product: tr(A^t B)
double Singularvalue(int i)
void Reset(double *d, int h, int w)
Change the data array and the size of the DenseMatrix.
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
void Add(const double c, const DenseMatrix &A)
Adds the matrix A multiplied by the number c to the matrix.
void AddMult_a_VWt(const double a, const Vector &v, const Vector &w, DenseMatrix &VWt)
VWt += a * v w^t.
void InvSymmetricScaling(const Vector &s)
InvSymmetricScaling this = diag(sqrt(1./s)) * this * diag(sqrt(1./s))
void GetRow(int r, Vector &row) const
void BlockForwSolve(int m, int n, int r, const double *L21, double *B1, double *B2) const
DenseMatrixSVD(DenseMatrix &M)
Abstract data type matrix.
const double * GetColumn(int col) const
void Norm2(double *v) const
Take the 2-norm of the columns of A and store in v.
void MultADBt(const DenseMatrix &A, const Vector &D, const DenseMatrix &B, DenseMatrix &ADBt)
ADBt = A D B^t, where D is diagonal.
void Invert()
Replaces the current matrix with its inverse.
bool LinearSolve(DenseMatrix &A, double *X, double TOL)
Solves the dense linear system, A * X = B for X
virtual ~DenseMatrixInverse()
Destroys dense inverse matrix.
void LSolve(int m, int n, double *X) const
void LeftScaling(const Vector &s)
LeftScaling this = diag(s) * this.
double Det() const
Compute the determinant of the original DenseMatrix using the LU factors.
void AddMultVVt(const Vector &v, DenseMatrix &VVt)
VVt += v v^t.
void CopyMNDiag(double c, int n, int row_offset, int col_offset)
Copy c on the diagonal of size n to *this at row_offset, col_offset.
bool OwnsHostPtr() const
Return true if the host pointer is owned. Ownership indicates whether the pointer will be deleted by ...
~DenseMatrixEigensystem()
void AddMult_a_VVt(const double a, const Vector &v, DenseMatrix &VVt)
VVt += a * v v^t.
void Neg()
(*this) = -(*this)
virtual void SetOperator(const Operator &op)
Set/update the solver for the given operator.
void Solve(int m, int n, double *X) const
double * ReadWrite(bool on_dev=true)
Shortcut for mfem::ReadWrite(GetMemory(), TotalSize(), on_dev).
void Getl1Diag(Vector &l) const
Returns the l1 norm of the rows of the matrix v_i = sum_j |a_ij|.
void AddToVector(int offset, Vector &v) const
Add the matrix 'data' to the Vector 'v' at the given 'offset'.
const T * Read(const Memory< T > &mem, int size, bool on_dev=true)
Get a pointer for read access to mem with the mfem::Device's DeviceMemoryClass, if on_dev = true...
DenseMatrix & Eigenvectors()
void Reset()
Reset the memory to be empty, ensuring that Delete() will be a no-op.
void GetColumn(int c, Vector &col) const
void AddMult(const Vector &x, Vector &y) const
y += A.x
void Threshold(double eps)
Replace small entries, abs(a_ij) <= eps, with zero.
void CalcInverse(const DenseMatrix &a, DenseMatrix &inva)
void TestInversion()
Print the numerical conditioning of the inversion: ||A^{-1} A - I||.
double MaxMaxNorm() const
Compute the norm ||A|| = max_{ij} |A_{ij}|.
double * Data() const
Returns the matrix data array.
void Transpose()
(*this) = (*this)^t
void MultVVt(const Vector &v, DenseMatrix &vvt)
Make a matrix from a vector V.Vt.
double Trace() const
Trace of a square matrix.
void AddMultABt(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
ABt += A * B^t.
MemoryType
Memory types supported by MFEM.
DenseTensor(int i, int j, int k)
void MultAAt(const DenseMatrix &a, DenseMatrix &aat)
Calculate the matrix A.At.
void GetColumnReference(int c, Vector &col)
void AddMatrix(DenseMatrix &A, int ro, int co)
Perform (ro+i,co+j)+=A(i,j) for 0<=i<A.Height, 0<=j<A.Width.
DenseMatrix(double *d, int h, int w)
Construct a DenseMatrix using an existing data array.
double * HostWrite()
Shortcut for mfem::Write(GetMemory(), TotalSize(), false).
void Clear()
Delete the matrix data array (if owned) and reset the matrix state.
void CalcInverseTranspose(const DenseMatrix &a, DenseMatrix &inva)
Calculate the inverse transpose of a matrix (for NxN matrices, N=1,2,3)
double * HostReadWrite()
Shortcut for mfem::ReadWrite(GetMemory(), TotalSize(), false).
A class to initialize the size of a Tensor.
void SetDataAndSize(double *d, int s)
Set the Vector data and size.
void MultADAt(const DenseMatrix &A, const Vector &D, DenseMatrix &ADAt)
ADAt = A D A^t, where D is diagonal.
void Eigenvalues(DenseMatrix &b, Vector &ev)
int height
Dimension of the output / number of rows in the matrix.
double * ReadWrite(bool on_dev=true)
Shortcut for mfem::ReadWrite(GetMemory(), TotalSize(), on_dev).
virtual void PrintT(std::ostream &out=mfem::out, int width_=4) const
Prints the transpose matrix to stream out.
void CopyCols(const DenseMatrix &A, int col1, int col2)
Copy columns col1 through col2 from A to *this.
virtual MatrixInverse * Inverse() const
Returns a pointer to the inverse matrix.
double * GetColumn(int col)
bool OwnsData() const
Return the DenseMatrix data (host pointer) ownership flag.
void AddMultADBt(const DenseMatrix &A, const Vector &D, const DenseMatrix &B, DenseMatrix &ADBt)
ADBt = A D B^t, where D is diagonal.
virtual ~DenseMatrix()
Destroys dense matrix.
T * ReadWrite(Memory< T > &mem, int size, bool on_dev=true)
Get a pointer for read+write access to mem with the mfem::Device's DeviceMemoryClass, if on_dev = true, or the mfem::Device's HostMemoryClass, otherwise.
void CopyMNt(const DenseMatrix &A, int row_offset, int col_offset)
Copy matrix A^t to the location in *this at row_offset, col_offset.
void AddMultTranspose(const Vector &x, Vector &y) const
y += A^t x
void CopyExceptMN(const DenseMatrix &A, int m, int n)
Copy All rows and columns except m and n from A.
void New(int size)
Allocate host memory for size entries with the current host memory type returned by MemoryManager::Ge...
void Diag(double c, int n)
Creates n x n diagonal matrix with diagonal elements c.
void Mult(int m, int n, double *X) const
bool Factor(int m, double TOL=0.0)
Compute the LU factorization of the current matrix.
static const int ipiv_base
void GradToCurl(DenseMatrix &curl)
DenseMatrixInverse()
Default constructor.
double CalcSingularvalue(const int i) const
Return the i-th singular value (decreasing order) of NxN matrix, N=1,2,3.
void GetRowSums(Vector &l) const
Compute the row sums of the DenseMatrix.
void CalcEigenvalues(double *lambda, double *vec) const
const Memory< double > & GetMemory() const
void Eigenvalues(Vector &ev, DenseMatrix &evect)
Compute eigenvalues and eigenvectors of A x = ev x where A = *this.
DenseMatrixEigensystem(DenseMatrix &m)
const double * HostRead() const
Shortcut for mfem::Read(GetMemory(), TotalSize(), false).
int Rank(double tol) const
LUFactors(double *data_, int *ipiv_)
void AddMult_a(double a, const Vector &x, Vector &y) const
y += a * A.x
void RightScaling(const Vector &s)
RightScaling: this = this * diag(s);.
DenseTensor(const DenseTensor &other)
Copy constructor: deep copy.
void MultAtB(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &AtB)
Multiply the transpose of a matrix A with a matrix B: At*B.
void Mult(const double *x, double *y) const
Matrix vector multiplication.
void AddMultTranspose_a(double a, const Vector &x, Vector &y) const
y += a * A^t x
void AddMultADAt(const DenseMatrix &A, const Vector &D, DenseMatrix &ADAt)
ADAt += A D A^t, where D is diagonal.
void GetFromVector(int offset, const Vector &v)
Get the matrix 'data' from the Vector 'v' at the given 'offset'.
Memory< double > & GetMemory()
void CopyMN(const DenseMatrix &A, int m, int n, int Aro, int Aco)
Copy the m x n submatrix of A at row/col offsets Aro/Aco to *this.
double * Write(bool on_dev=true)
Shortcut for mfem::Write(GetMemory(), TotalSize(), on_dev).
double * Write(bool on_dev=true)
Shortcut for mfem::Write(GetMemory(), TotalSize(), on_dev).
void InvLeftScaling(const Vector &s)
InvLeftScaling this = diag(1./s) * this.
void UseExternalData(double *d, int h, int w)
Change the data array and the size of the DenseMatrix.
void Eigensystem(Vector &ev, DenseMatrix &evect)
Compute eigenvalues and eigenvectors of A x = ev x where A = *this.
void SetSize(int s)
Change the size of the DenseMatrix to s x s.
OutStream out(std::cout)
Global stream used by the library for standard output. Initially it uses the same std::streambuf as s...
void AddMult_a(double alpha, const DenseMatrix &b, const DenseMatrix &c, DenseMatrix &a)
Matrix matrix multiplication. A += alpha * B * C.
int Size() const
Get the size of the inverse matrix.
Vector & Singularvalues()
Rank 3 tensor (array of matrices)
double InnerProduct(const Vector &x, const Vector &y) const
Compute y^t A x.
double FNorm2() const
Compute the square of the Frobenius norm of the matrix.
virtual double & Elem(int i, int j)
Returns reference to a_{ij}.
void AdjustDofDirection(Array< int > &dofs)
void GradToDiv(Vector &div)
void AddMult_a_AAt(double a, const DenseMatrix &A, DenseMatrix &AAt)
AAt += a * A * A^t.
int width
Dimension of the input / number of columns in the matrix.
void Eigenvalues(DenseMatrix &b, Vector &ev, DenseMatrix &evect)
Compute generalized eigenvalues of A x = ev B x, where A = *this.
const double * Read(bool on_dev=true) const
Shortcut for mfem::Read( GetMemory(), TotalSize(), on_dev).
virtual void PrintMatlab(std::ostream &out=mfem::out) const
DenseMatrix & operator+=(const double *m)