MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
tfe.hpp File Reference

Go to the source code of this file.

Classes

class  mfem::H1_FiniteElement< Geometry::SEGMENT, P >
 
class  mfem::H1_FiniteElement< Geometry::TRIANGLE, P >
 
class  mfem::H1_FiniteElement< Geometry::SQUARE, P >
 
class  mfem::H1_FiniteElement< Geometry::TETRAHEDRON, P >
 
class  mfem::H1_FiniteElement< Geometry::CUBE, P >
 
class  mfem::L2_FiniteElement_base< G, P, L2_FE_type, L2Pos_FE_type, DOFS, TP >
 
class  mfem::L2_FiniteElement< Geometry::SEGMENT, P >
 
class  mfem::L2_FiniteElement< Geometry::TRIANGLE, P >
 
class  mfem::L2_FiniteElement< Geometry::SQUARE, P >
 
class  mfem::L2_FiniteElement< Geometry::TETRAHEDRON, P >
 
class  mfem::L2_FiniteElement< Geometry::CUBE, P >
 

Namespaces

namespace  mfem
 

Functions

template<typename real_t >
void mfem::CalcShapeMatrix (const FiniteElement &fe, const IntegrationRule &ir, real_t *B, const Array< int > *dof_map=NULL)
 Store mass-like matrix B for each integration point on the reference element. For tensor product evaluation, this is only called on the 1D reference element, and higher dimensions are put together from that. The element mass matrix can be written \( M_E = B^T D_E B \) where the B built here is the B, and is unchanging across the mesh. The diagonal matrix \( D_E \) then contains all the element-specific geometry and physics data.
 
template<typename real_t >
void mfem::CalcGradTensor (const FiniteElement &fe, const IntegrationRule &ir, real_t *G, const Array< int > *dof_map=NULL)
 store gradient matrix G for each integration point on the reference element. For tensor product evaluation, this is only called on the 1D reference element, and higher dimensions are put together from that. The element stiffness matrix can be written
 
template<typename real_t >
void mfem::CalcShapes (const FiniteElement &fe, const IntegrationRule &ir, real_t *B, real_t *G, const Array< int > *dof_map)