59 int main(
int argc,
char *argv[])
62 const char *mesh_file =
"../data/star.mesh";
65 bool static_cond =
false;
66 bool hybridization =
false;
68 const char *device_config =
"cpu";
69 bool visualization = 1;
72 args.
AddOption(&mesh_file,
"-m",
"--mesh",
75 "Finite element order (polynomial degree).");
76 args.
AddOption(&set_bc,
"-bc",
"--impose-bc",
"-no-bc",
"--dont-impose-bc",
77 "Impose or not essential boundary conditions.");
78 args.
AddOption(&
freq,
"-f",
"--frequency",
"Set the frequency for the exact" 80 args.
AddOption(&static_cond,
"-sc",
"--static-condensation",
"-no-sc",
81 "--no-static-condensation",
"Enable static condensation.");
82 args.
AddOption(&hybridization,
"-hb",
"--hybridization",
"-no-hb",
83 "--no-hybridization",
"Enable hybridization.");
84 args.
AddOption(&pa,
"-pa",
"--partial-assembly",
"-no-pa",
85 "--no-partial-assembly",
"Enable Partial Assembly.");
86 args.
AddOption(&device_config,
"-d",
"--device",
87 "Device configuration string, see Device::Configure().");
88 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
90 "Enable or disable GLVis visualization.");
102 Device device(device_config);
108 Mesh *mesh =
new Mesh(mesh_file, 1, 1);
118 (int)floor(log(25000./mesh->
GetNE())/log(2.)/
dim);
119 for (
int l = 0; l < ref_levels; l++)
129 cout <<
"Number of finite element unknowns: " 140 ess_bdr = set_bc ? 1 : 0;
168 if (pa) {
a->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
180 a->EnableStaticCondensation();
182 else if (hybridization)
193 a->FormLinearSystem(ess_tdof_list, x, *
b, A, X, B);
195 cout <<
"Size of linear system: " << A->
Height() << endl;
200 #ifndef MFEM_USE_SUITESPARSE 203 PCG(*A, M, B, X, 1, 10000, 1e-20, 0.0);
207 umf_solver.
Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
209 umf_solver.
Mult(B, X);
217 PCG(*A, M, B, X, 1, 10000, 1e-20, 0.0);
221 CG(*A, B, X, 1, 10000, 1e-20, 0.0);
226 a->RecoverFEMSolution(X, *
b, x);
229 cout <<
"\n|| F_h - F ||_{L^2} = " << x.
ComputeL2Error(F) <<
'\n' << endl;
234 ofstream mesh_ofs(
"refined.mesh");
235 mesh_ofs.precision(8);
236 mesh->
Print(mesh_ofs);
237 ofstream sol_ofs(
"sol.gf");
238 sol_ofs.precision(8);
248 sol_sock.precision(8);
249 sol_sock <<
"solution\n" << *mesh << x << flush;
virtual double ComputeL2Error(Coefficient *exsol[], const IntegrationRule *irs[]=NULL, const Array< int > *elems=NULL) const
Class for grid function - Vector with associated FE space.
A coefficient that is constant across space and time.
void PrintOptions(std::ostream &out) const
Print the options.
void PrintUsage(std::ostream &out) const
Print the usage message.
Pointer to an Operator of a specified type.
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1)
Get a list of essential true dofs, ess_tdof_list, corresponding to the boundary attributes marked in ...
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
bool Good() const
Return true if the command line options were parsed successfully.
bool UsesTensorBasis(const FiniteElementSpace &fes)
Return true if the mesh contains only one topology and the elements are tensor elements.
(Q div u, div v) for RT elements
Data type for Gauss-Seidel smoother of sparse matrix.
Direct sparse solver using UMFPACK.
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
Jacobi smoothing for a given bilinear form (no matrix necessary).
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
void F_exact(const Vector &, Vector &)
void CG(const Operator &A, const Vector &b, Vector &x, int print_iter, int max_num_iter, double RTOLERANCE, double ATOLERANCE)
Conjugate gradient method. (tolerances are squared)
void PCG(const Operator &A, Solver &B, const Vector &b, Vector &x, int print_iter, int max_num_iter, double RTOLERANCE, double ATOLERANCE)
Preconditioned conjugate gradient method. (tolerances are squared)
Arbitrary order H(div)-conforming Raviart-Thomas finite elements.
A general vector function coefficient.
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
double p(const Vector &x, double t)
double Control[UMFPACK_CONTROL]
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
Base class Coefficients that optionally depend on space and time. These are used by the BilinearFormI...
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set 'var' to receive the value. Enable/disable tags are used to set the bool...
virtual void Mult(const Vector &b, Vector &x) const
Operator application: y=A(x).
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
int main(int argc, char *argv[])
int SpaceDimension() const
int GetNE() const
Returns number of elements.
void f_exact(const Vector &, Vector &)
virtual void ProjectCoefficient(Coefficient &coeff)
Project coeff Coefficient to this GridFunction. The projection computation depends on the choice of t...
int Size() const
Return the logical size of the array.
for VectorFiniteElements (Nedelec, Raviart-Thomas)
virtual void Print(std::ostream &os=mfem::out) const
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
double f(const Vector &p)
virtual void SetOperator(const Operator &op)
Factorize the given Operator op which must be a SparseMatrix.