|
| RT_FECollection (const int p, const int dim, const int cb_type=BasisType::GaussLobatto, const int ob_type=BasisType::GaussLegendre) |
| Construct an H(div)-conforming Raviart-Thomas FE collection, RT_p. More...
|
|
virtual const FiniteElement * | FiniteElementForGeometry (Geometry::Type GeomType) const |
|
virtual int | DofForGeometry (Geometry::Type GeomType) const |
|
virtual const int * | DofOrderForOrientation (Geometry::Type GeomType, int Or) const |
| Returns an array, say p, that maps a local permuted index i to a local base index: base_i = p[i]. More...
|
|
virtual const char * | Name () const |
|
virtual int | GetContType () const |
|
FiniteElementCollection * | GetTraceCollection () const |
|
int | GetClosedBasisType () const |
|
int | GetOpenBasisType () const |
|
FiniteElementCollection * | Clone (int p) const |
| Instantiate a new collection of the same type with a different order. More...
|
|
virtual | ~RT_FECollection () |
|
virtual const FiniteElement * | FiniteElementForDim (int dim) const |
| Returns the first non-NULL FiniteElement for the given dimension. More...
|
|
int | HasFaceDofs (Geometry::Type geom, int p) const |
|
virtual const FiniteElement * | TraceFiniteElementForGeometry (Geometry::Type GeomType) const |
|
virtual | ~FiniteElementCollection () |
|
void | SubDofOrder (Geometry::Type Geom, int SDim, int Info, Array< int > &dofs) const |
| Get the local dofs for a given sub-manifold. More...
|
|
const FiniteElement * | GetFE (Geometry::Type geom, int p) const |
| Variable order version of FiniteElementForGeometry(). More...
|
|
int | GetNumDof (Geometry::Type geom, int p) const |
| Variable order version of DofForGeometry(). More...
|
|
const int * | GetDofOrdering (Geometry::Type geom, int p, int ori) const |
| Variable order version of DofOrderForOrientation(). More...
|
|
int | GetOrder () const |
| Return the order (polynomial degree) of the FE collection, corresponding to the order/degree returned by FiniteElement::GetOrder() of the highest-dimensional FiniteElements defined by the collection. More...
|
|
virtual int | GetRangeType (int dim) const |
|
virtual int | GetDerivRangeType (int dim) const |
|
virtual int | GetMapType (int dim) const |
|
virtual int | GetDerivType (int dim) const |
|
virtual int | GetDerivMapType (int dim) const |
|
|
enum | { CONTINUOUS,
TANGENTIAL,
NORMAL,
DISCONTINUOUS
} |
| Enumeration for ContType: defines the continuity of the field across element interfaces. More...
|
|
static FiniteElementCollection * | New (const char *name) |
| Factory method: return a newly allocated FiniteElementCollection according to the given name. More...
|
|
enum | ErrorMode { RETURN_NULL,
RAISE_MFEM_ERROR
} |
| How to treat errors in FiniteElementForGeometry() calls. More...
|
|
template<Geometry::Type geom> |
static void | GetNVE (int &nv, int &ne) |
|
template<Geometry::Type geom, typename v_t > |
static void | GetEdge (int &nv, v_t &v, int &ne, int &e, int &eo, const int edge_info) |
|
template<Geometry::Type geom, Geometry::Type f_geom, typename v_t , typename e_t , typename eo_t > |
static void | GetFace (int &nv, v_t &v, int &ne, e_t &e, eo_t &eo, int &nf, int &f, Geometry::Type &fg, int &fo, const int face_info) |
|
Arbitrary order H(div)-conforming Raviart-Thomas finite elements.
Definition at line 373 of file fe_coll.hpp.
Construct an H(div)-conforming Raviart-Thomas FE collection, RT_p.
The index p corresponds to the space RT_p, as typically denoted in the literature, which contains vector polynomials of degree up to (p+1). For example, the RT_0 collection contains vector-valued linear functions and, in particular, FiniteElementCollection::GetOrder() will, correspondingly, return order 1.
Definition at line 2380 of file fe_coll.cpp.
Instantiate a new collection of the same type with a different order.
Generally, the order parameter p is NOT the same as the parameter p used by some of the constructors of derived classes. Instead, this p represents the order of the new FE collection as it will be returned by its GetOrder() method.
Reimplemented from mfem::FiniteElementCollection.
Definition at line 418 of file fe_coll.hpp.