79 int main(
int argc,
char *argv[])
83 const char *mesh_file =
"../data/periodic-hexagon.mesh";
86 int ode_solver_type = 4;
87 double t_final = 10.0;
89 bool visualization =
true;
95 cout.precision(precision);
98 args.
AddOption(&mesh_file,
"-m",
"--mesh",
101 "Problem setup to use. See options in velocity_function().");
102 args.
AddOption(&ref_levels,
"-r",
"--refine",
103 "Number of times to refine the mesh uniformly.");
105 "Order (degree) of the finite elements.");
106 args.
AddOption(&ode_solver_type,
"-s",
"--ode-solver",
107 "ODE solver: 1 - Forward Euler,\n\t"
108 " 2 - RK2 SSP, 3 - RK3 SSP, 4 - RK4, 6 - RK6.");
109 args.
AddOption(&t_final,
"-tf",
"--t-final",
110 "Final time; start time is 0.");
111 args.
AddOption(&dt,
"-dt",
"--time-step",
113 args.
AddOption(&visualization,
"-vis",
"--visualization",
"-no-vis",
114 "--no-visualization",
115 "Enable or disable GLVis visualization.");
116 args.
AddOption(&visit,
"-visit",
"--visit-datafiles",
"-no-visit",
117 "--no-visit-datafiles",
118 "Save data files for VisIt (visit.llnl.gov) visualization.");
119 args.
AddOption(&binary,
"-binary",
"--binary-datafiles",
"-ascii",
121 "Use binary (Sidre) or ascii format for VisIt data files.");
122 args.
AddOption(&vis_steps,
"-vs",
"--visualization-steps",
123 "Visualize every n-th timestep.");
134 Mesh *mesh =
new Mesh(mesh_file, 1, 1);
140 switch (ode_solver_type)
143 case 2: ode_solver =
new RK2Solver(1.0);
break;
145 case 4: ode_solver =
new RK4Solver;
break;
146 case 6: ode_solver =
new RK6Solver;
break;
148 cout <<
"Unknown ODE solver type: " << ode_solver_type <<
'\n';
157 for (
int lev = 0; lev < ref_levels; lev++)
172 cout <<
"Number of unknowns: " << fes.
GetVSize() << endl;
208 ofstream omesh(
"ex9.mesh");
209 omesh.precision(precision);
211 ofstream osol(
"ex9-init.gf");
212 osol.precision(precision);
223 #ifdef MFEM_USE_SIDRE
226 MFEM_ABORT(
"Must build with MFEM_USE_SIDRE=YES for binary output.");
243 char vishost[] =
"localhost";
245 sout.
open(vishost, visport);
248 cout <<
"Unable to connect to GLVis server at "
249 << vishost <<
':' << visport << endl;
250 visualization =
false;
251 cout <<
"GLVis visualization disabled.\n";
255 sout.precision(precision);
256 sout <<
"solution\n" << *mesh << u;
259 cout <<
"GLVis visualization paused."
260 <<
" Press space (in the GLVis window) to resume it.\n";
271 ode_solver->
Init(adv);
274 for (
int ti = 0; !done; )
276 double dt_real = min(dt, t_final - t);
277 ode_solver->
Step(u, t, dt_real);
280 done = (t >= t_final - 1e-8*dt);
282 if (done || ti % vis_steps == 0)
284 cout <<
"time step: " << ti <<
", time: " << t << endl;
288 sout <<
"solution\n" << *mesh << u << flush;
303 ofstream osol(
"ex9-final.gf");
304 osol.precision(precision);
346 for (
int i = 0; i <
dim; i++)
359 case 1: v(0) = 1.0;
break;
360 case 2: v(0) = sqrt(2./3.); v(1) = sqrt(1./3.);
break;
361 case 3: v(0) = sqrt(3./6.); v(1) = sqrt(2./6.); v(2) = sqrt(1./6.);
370 const double w = M_PI/2;
373 case 1: v(0) = 1.0;
break;
374 case 2: v(0) = w*X(1); v(1) = -w*X(0);
break;
375 case 3: v(0) = w*X(1); v(1) = -w*X(0); v(2) = 0.0;
break;
382 const double w = M_PI/2;
383 double d = max((X(0)+1.)*(1.-X(0)),0.) * max((X(1)+1.)*(1.-X(1)),0.);
387 case 1: v(0) = 1.0;
break;
388 case 2: v(0) = d*w*X(1); v(1) = -d*w*X(0);
break;
389 case 3: v(0) = d*w*X(1); v(1) = -d*w*X(0); v(2) = 0.0;
break;
403 for (
int i = 0; i <
dim; i++)
417 return exp(-40.*pow(X(0)-0.5,2));
421 double rx = 0.45, ry = 0.25, cx = 0., cy = -0.2, w = 10.;
424 const double s = (1. + 0.25*cos(2*M_PI*X(2)));
428 return ( erfc(w*(X(0)-cx-rx))*erfc(-w*(X(0)-cx+rx)) *
429 erfc(w*(X(1)-cy-ry))*erfc(-w*(X(1)-cy+ry)) )/16;
435 double x_ = X(0), y_ = X(1), rho, phi;
438 return pow(sin(M_PI*rho),2)*sin(3*phi);
442 const double f = M_PI;
443 return sin(f*X(0))*sin(f*X(1));
void SetPrecision(int prec)
Set the precision (number of digits) used for the text output of doubles.
int GetVSize() const
Return the number of vector dofs, i.e. GetNDofs() x GetVDim().
virtual void Print(std::ostream &out=mfem::out) const
Conjugate gradient method.
Class for grid function - Vector with associated FE space.
void SetCycle(int c)
Set time cycle (for time-dependent simulations)
Data type for scaled Jacobi-type smoother of sparse matrix.
virtual void Mult(const Vector &b, Vector &x) const
Operator application: y=A(x).
virtual void Init(TimeDependentOperator &f)
Associate a TimeDependentOperator with the ODE solver.
Base abstract class for time dependent operators.
void Mult(const Table &A, const Table &B, Table &C)
C = A * B (as boolean matrices)
void GetBoundingBox(Vector &min, Vector &max, int ref=2)
virtual void Step(Vector &x, double &t, double &dt)=0
Perform a time step from time t [in] to time t [out] based on the requested step size dt [in]...
virtual void SetTime(const double _t)
Set the current time.
int Size() const
Returns the size of the vector.
Abstract class for solving systems of ODEs: dx/dt = f(x,t)
bool iterative_mode
If true, use the second argument of Mult() as an initial guess.
int main(int argc, char *argv[])
FE_Evolution(FiniteElementSpace &_vfes, Operator &_A, SparseMatrix &_Aflux)
Data collection with Sidre routines following the Conduit mesh blueprint specification.
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
virtual void RegisterField(const std::string &field_name, GridFunction *gf)
Add a grid function to the collection.
void SetPrintLevel(int print_lvl)
virtual void Save()
Save the collection to disk.
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
Data collection with VisIt I/O routines.
void SetMaxIter(int max_it)
void SetCurvature(int order, bool discont=false, int space_dim=-1, int ordering=1)
void PrintUsage(std::ostream &out) const
void SetTime(double t)
Set physical time (for time-dependent simulations)
The classical explicit forth-order Runge-Kutta method, RK4.
void SetAbsTol(double atol)
void SetRelTol(double rtol)
void velocity_function(const Vector &x, Vector &v)
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
virtual void Mult(const Vector &x, Vector &y) const
Matrix vector multiplication.
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Third-order, strong stability preserving (SSP) Runge-Kutta method.
virtual void Mult(const Vector &x, Vector &y) const
Perform the action of the operator: y = k = f(x, t), where k solves the algebraic equation F(x...
NURBSExtension * NURBSext
Optional NURBS mesh extension.
void PrintOptions(std::ostream &out) const
virtual void ProjectCoefficient(Coefficient &coeff)
int open(const char hostname[], int port)
double u0_function(const Vector &x)
virtual void SetOperator(const Operator &op)
Also calls SetOperator for the preconditioner if there is one.
class for C-function coefficient
virtual void SetPreconditioner(Solver &pr)
This should be called before SetOperator.
The classical forward Euler method.
double inflow_function(const Vector &x)
Arbitrary order "L2-conforming" discontinuous finite elements.