|
| pLaplaceAD () |
|
| pLaplaceAD (Coefficient &pp_) |
|
| pLaplaceAD (Coefficient &pp_, Coefficient &q, Coefficient &ld_) |
|
virtual | ~pLaplaceAD () |
|
real_t | GetElementEnergy (const FiniteElement &el, ElementTransformation &trans, const Vector &elfun) override |
| Compute the local energy.
|
|
void | AssembleElementVector (const FiniteElement &el, ElementTransformation &trans, const Vector &elfun, Vector &elvect) override |
| Perform the local action of the NonlinearFormIntegrator.
|
|
void | AssembleElementGrad (const FiniteElement &el, ElementTransformation &trans, const Vector &elfun, DenseMatrix &elmat) override |
| Assemble the local gradient matrix.
|
|
void | SetIntegrationMode (Mode m) |
|
bool | Patchwise () const |
|
void | SetPAMemoryType (MemoryType mt) |
|
virtual void | AssembleFaceVector (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, Vector &elvect) |
| Perform the local action of the NonlinearFormIntegrator resulting from a face integral term.
|
|
virtual void | AssembleFaceGrad (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, DenseMatrix &elmat) |
| Assemble the local action of the gradient of the NonlinearFormIntegrator resulting from a face integral term.
|
|
virtual void | AssemblePA (const FiniteElementSpace &fes) |
| Method defining partial assembly.
|
|
virtual void | AssemblePA (const FiniteElementSpace &trial_fes, const FiniteElementSpace &test_fes) |
|
virtual void | AssembleGradPA (const Vector &x, const FiniteElementSpace &fes) |
| Prepare the integrator for partial assembly (PA) gradient evaluations on the given FE space fes at the state x.
|
|
virtual real_t | GetLocalStateEnergyPA (const Vector &x) const |
| Compute the local (to the MPI rank) energy with partial assembly.
|
|
virtual void | AddMultPA (const Vector &x, Vector &y) const |
| Method for partially assembled action.
|
|
virtual void | AddMultGradPA (const Vector &x, Vector &y) const |
| Method for partially assembled gradient action.
|
|
virtual void | AssembleGradDiagonalPA (Vector &diag) const |
| Method for computing the diagonal of the gradient with partial assembly.
|
|
virtual bool | SupportsCeed () const |
| Indicates whether this integrator can use a Ceed backend.
|
|
virtual void | AssembleMF (const FiniteElementSpace &fes) |
| Method defining fully unassembled operator.
|
|
virtual void | AddMultMF (const Vector &x, Vector &y) const |
|
ceed::Operator & | GetCeedOp () |
|
virtual | ~NonlinearFormIntegrator () |
|
| Integrator (const IntegrationRule *ir=NULL) |
| Create a new Integrator, optionally providing a prescribed quadrature rule to use in assembly.
|
|
virtual void | SetIntRule (const IntegrationRule *ir) |
| Prescribe a fixed IntegrationRule to use, or set to null to let the integrator choose an appropriate rule.
|
|
void | SetIntegrationRule (const IntegrationRule &ir) |
| Prescribe a fixed IntegrationRule to use. Sets the NURBS patch integration rule to null.
|
|
void | SetNURBSPatchIntRule (NURBSMeshRules *pr) |
| Sets an integration rule for use on NURBS patches.
|
|
bool | HasNURBSPatchIntRule () const |
| Check if a NURBS patch integration rule has been set.
|
|
const IntegrationRule * | GetIntRule () const |
| Directly return the IntRule pointer (possibly null) without checking for NURBS patch rules or falling back on a default.
|
|
const IntegrationRule * | GetIntegrationRule () const |
| Equivalent to GetIntRule, but retained for backward compatibility with applications.
|
|
template<class CQVectAutoDiff>
class mfem::pLaplaceAD< CQVectAutoDiff >
Implements integrator for a p-Laplacian problem. The integrator is based on a class QFunction utilized for evaluating the energy, the first derivative (residual) and the Hessian of the energy (the Jacobian of the residual). The template parameter CQVectAutoDiff represents the automatically differentiated energy or residual implemented by the user. CQVectAutoDiff::VectorFunc(Vector parameters, Vector state,Vector residual) evaluates the residual at an integration point. CQVectAutoDiff::Jacobian(Vector parameters, Vector state, Matrix hessian) evaluates the Hessian of the energy(the Jacobian of the residual).
Definition at line 104 of file example.hpp.