MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
mfem::electromagnetics::MaxwellSolver Class Reference

#include <maxwell_solver.hpp>

Inheritance diagram for mfem::electromagnetics::MaxwellSolver:
[legend]
Collaboration diagram for mfem::electromagnetics::MaxwellSolver:
[legend]

Public Member Functions

 MaxwellSolver (ParMesh &pmesh, int sOrder, real_t(*eps)(const Vector &), real_t(*muInv)(const Vector &), real_t(*sigma)(const Vector &), void(*j_src)(const Vector &, real_t, Vector &), Array< int > &abcs, Array< int > &dbcs, void(*dEdt_bc)(const Vector &, real_t, Vector &))
 
 ~MaxwellSolver ()
 
int GetLogging () const
 
void SetLogging (int logging)
 
HYPRE_BigInt GetProblemSize ()
 
void PrintSizes ()
 
void SetInitialEField (VectorCoefficient &EFieldCoef)
 
void SetInitialBField (VectorCoefficient &BFieldCoef)
 
void Mult (const Vector &B, Vector &dEdt) const
 Perform the action of the operator: y = k = f(x, t), where k solves the algebraic equation F(x, k, t) = G(x, t) and t is the current time.
 
void ImplicitSolve (const real_t dt, const Vector &x, Vector &k)
 Solve the equation: k = f(x + dt k, t), for the unknown k at the current time t.
 
real_t GetMaximumTimeStep () const
 
real_t GetEnergy () const
 
OperatorGetNegCurl ()
 
VectorGetEField ()
 
VectorGetBField ()
 
void SyncGridFuncs ()
 
void RegisterVisItFields (VisItDataCollection &visit_dc)
 
void WriteVisItFields (int it=0)
 
void InitializeGLVis ()
 
void DisplayToGLVis ()
 
- Public Member Functions inherited from mfem::TimeDependentOperator
 TimeDependentOperator (int n=0, real_t t_=0.0, Type type_=EXPLICIT)
 Construct a "square" TimeDependentOperator y = f(x,t), where x and y have the same dimension n.
 
 TimeDependentOperator (int h, int w, real_t t_=0.0, Type type_=EXPLICIT)
 Construct a TimeDependentOperator y = f(x,t), where x and y have dimensions w and h, respectively.
 
virtual real_t GetTime () const
 Read the currently set time.
 
virtual void SetTime (const real_t t_)
 Set the current time.
 
bool isExplicit () const
 True if type is EXPLICIT.
 
bool isImplicit () const
 True if type is IMPLICIT or HOMOGENEOUS.
 
bool isHomogeneous () const
 True if type is HOMOGENEOUS.
 
EvalMode GetEvalMode () const
 Return the current evaluation mode. See SetEvalMode() for details.
 
virtual void SetEvalMode (const EvalMode new_eval_mode)
 Set the evaluation mode of the time-dependent operator.
 
virtual void ExplicitMult (const Vector &x, Vector &y) const
 Perform the action of the explicit part of the operator, G: y = G(x, t) where t is the current time.
 
virtual void ImplicitMult (const Vector &x, const Vector &k, Vector &y) const
 Perform the action of the implicit part of the operator, F: y = F(x, k, t) where t is the current time.
 
virtual OperatorGetImplicitGradient (const Vector &x, const Vector &k, real_t shift) const
 Return an Operator representing (dF/dk shift + dF/dx) at the given x, k, and the currently set time.
 
virtual OperatorGetExplicitGradient (const Vector &x) const
 Return an Operator representing dG/dx at the given point x and the currently set time.
 
virtual int SUNImplicitSetup (const Vector &x, const Vector &fx, int jok, int *jcur, real_t gamma)
 Setup the ODE linear system \( A(x,t) = (I - gamma J) \) or \( A = (M - gamma J) \), where \( J(x,t) = \frac{df}{dt(x,t)} \).
 
virtual int SUNImplicitSolve (const Vector &b, Vector &x, real_t tol)
 Solve the ODE linear system \( A x = b \) as setup by the method SUNImplicitSetup().
 
virtual int SUNMassSetup ()
 Setup the mass matrix in the ODE system \( M y' = f(y,t) \) .
 
virtual int SUNMassSolve (const Vector &b, Vector &x, real_t tol)
 Solve the mass matrix linear system \( M x = b \) as setup by the method SUNMassSetup().
 
virtual int SUNMassMult (const Vector &x, Vector &v)
 Compute the mass matrix-vector product \( v = M x \) .
 
virtual ~TimeDependentOperator ()
 
- Public Member Functions inherited from mfem::Operator
void InitTVectors (const Operator *Po, const Operator *Ri, const Operator *Pi, Vector &x, Vector &b, Vector &X, Vector &B) const
 Initializes memory for true vectors of linear system.
 
 Operator (int s=0)
 Construct a square Operator with given size s (default 0).
 
 Operator (int h, int w)
 Construct an Operator with the given height (output size) and width (input size).
 
int Height () const
 Get the height (size of output) of the Operator. Synonym with NumRows().
 
int NumRows () const
 Get the number of rows (size of output) of the Operator. Synonym with Height().
 
int Width () const
 Get the width (size of input) of the Operator. Synonym with NumCols().
 
int NumCols () const
 Get the number of columns (size of input) of the Operator. Synonym with Width().
 
virtual MemoryClass GetMemoryClass () const
 Return the MemoryClass preferred by the Operator.
 
virtual void MultTranspose (const Vector &x, Vector &y) const
 Action of the transpose operator: y=A^t(x). The default behavior in class Operator is to generate an error.
 
virtual void AddMult (const Vector &x, Vector &y, const real_t a=1.0) const
 Operator application: y+=A(x) (default) or y+=a*A(x).
 
virtual void AddMultTranspose (const Vector &x, Vector &y, const real_t a=1.0) const
 Operator transpose application: y+=A^t(x) (default) or y+=a*A^t(x).
 
virtual void ArrayMult (const Array< const Vector * > &X, Array< Vector * > &Y) const
 Operator application on a matrix: Y=A(X).
 
virtual void ArrayMultTranspose (const Array< const Vector * > &X, Array< Vector * > &Y) const
 Action of the transpose operator on a matrix: Y=A^t(X).
 
virtual void ArrayAddMult (const Array< const Vector * > &X, Array< Vector * > &Y, const real_t a=1.0) const
 Operator application on a matrix: Y+=A(X) (default) or Y+=a*A(X).
 
virtual void ArrayAddMultTranspose (const Array< const Vector * > &X, Array< Vector * > &Y, const real_t a=1.0) const
 Operator transpose application on a matrix: Y+=A^t(X) (default) or Y+=a*A^t(X).
 
virtual OperatorGetGradient (const Vector &x) const
 Evaluate the gradient operator at the point x. The default behavior in class Operator is to generate an error.
 
virtual void AssembleDiagonal (Vector &diag) const
 Computes the diagonal entries into diag. Typically, this operation only makes sense for linear Operators. In some cases, only an approximation of the diagonal is computed.
 
virtual const OperatorGetProlongation () const
 Prolongation operator from linear algebra (linear system) vectors, to input vectors for the operator. NULL means identity.
 
virtual const OperatorGetRestriction () const
 Restriction operator from input vectors for the operator to linear algebra (linear system) vectors. NULL means identity.
 
virtual const OperatorGetOutputProlongation () const
 Prolongation operator from linear algebra (linear system) vectors, to output vectors for the operator. NULL means identity.
 
virtual const OperatorGetOutputRestrictionTranspose () const
 Transpose of GetOutputRestriction, directly available in this form to facilitate matrix-free RAP-type operators.
 
virtual const OperatorGetOutputRestriction () const
 Restriction operator from output vectors for the operator to linear algebra (linear system) vectors. NULL means identity.
 
void FormLinearSystem (const Array< int > &ess_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B, int copy_interior=0)
 Form a constrained linear system using a matrix-free approach.
 
void FormRectangularLinearSystem (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B)
 Form a column-constrained linear system using a matrix-free approach.
 
virtual void RecoverFEMSolution (const Vector &X, const Vector &b, Vector &x)
 Reconstruct a solution vector x (e.g. a GridFunction) from the solution X of a constrained linear system obtained from Operator::FormLinearSystem() or Operator::FormRectangularLinearSystem().
 
void FormSystemOperator (const Array< int > &ess_tdof_list, Operator *&A)
 Return in A a parallel (on truedofs) version of this square operator.
 
void FormRectangularSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Operator *&A)
 Return in A a parallel (on truedofs) version of this rectangular operator (including constraints).
 
void FormDiscreteOperator (Operator *&A)
 Return in A a parallel (on truedofs) version of this rectangular operator.
 
void PrintMatlab (std::ostream &out, int n, int m=0) const
 Prints operator with input size n and output size m in Matlab format.
 
virtual void PrintMatlab (std::ostream &out) const
 Prints operator in Matlab format.
 
virtual ~Operator ()
 Virtual destructor.
 
Type GetType () const
 Return the type ID of the Operator class.
 

Additional Inherited Members

- Public Types inherited from mfem::TimeDependentOperator
enum  Type { EXPLICIT , IMPLICIT , HOMOGENEOUS }
 
enum  EvalMode { NORMAL , ADDITIVE_TERM_1 , ADDITIVE_TERM_2 }
 Evaluation mode. See SetEvalMode() for details. More...
 
- Public Types inherited from mfem::Operator
enum  DiagonalPolicy { DIAG_ZERO , DIAG_ONE , DIAG_KEEP }
 Defines operator diagonal policy upon elimination of rows and/or columns. More...
 
enum  Type {
  ANY_TYPE , MFEM_SPARSEMAT , Hypre_ParCSR , PETSC_MATAIJ ,
  PETSC_MATIS , PETSC_MATSHELL , PETSC_MATNEST , PETSC_MATHYPRE ,
  PETSC_MATGENERIC , Complex_Operator , MFEM_ComplexSparseMat , Complex_Hypre_ParCSR ,
  Complex_DenseMat , MFEM_Block_Matrix , MFEM_Block_Operator
}
 Enumeration defining IDs for some classes derived from Operator. More...
 
- Protected Member Functions inherited from mfem::Operator
void FormConstrainedSystemOperator (const Array< int > &ess_tdof_list, ConstrainedOperator *&Aout)
 see FormSystemOperator()
 
void FormRectangularConstrainedSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, RectangularConstrainedOperator *&Aout)
 see FormRectangularSystemOperator()
 
OperatorSetupRAP (const Operator *Pi, const Operator *Po)
 Returns RAP Operator of this, using input/output Prolongation matrices Pi corresponds to "P", Po corresponds to "Rt".
 
- Protected Attributes inherited from mfem::TimeDependentOperator
real_t t
 Current time.
 
Type type
 Describes the form of the TimeDependentOperator.
 
EvalMode eval_mode
 Current evaluation mode.
 
- Protected Attributes inherited from mfem::Operator
int height
 Dimension of the output / number of rows in the matrix.
 
int width
 Dimension of the input / number of columns in the matrix.
 

Detailed Description

Definition at line 37 of file maxwell_solver.hpp.

Constructor & Destructor Documentation

◆ MaxwellSolver()

mfem::electromagnetics::MaxwellSolver::MaxwellSolver ( ParMesh & pmesh,
int sOrder,
real_t(* eps )(const Vector &),
real_t(* muInv )(const Vector &),
real_t(* sigma )(const Vector &),
void(* j_src )(const Vector &, real_t, Vector &),
Array< int > & abcs,
Array< int > & dbcs,
void(* dEdt_bc )(const Vector &, real_t, Vector &) )

Definition at line 29 of file maxwell_solver.cpp.

◆ ~MaxwellSolver()

mfem::electromagnetics::MaxwellSolver::~MaxwellSolver ( )

Definition at line 272 of file maxwell_solver.cpp.

Member Function Documentation

◆ DisplayToGLVis()

void mfem::electromagnetics::MaxwellSolver::DisplayToGLVis ( )

Definition at line 606 of file maxwell_solver.cpp.

◆ GetBField()

Vector & mfem::electromagnetics::MaxwellSolver::GetBField ( )
inline

Definition at line 71 of file maxwell_solver.hpp.

◆ GetEField()

Vector & mfem::electromagnetics::MaxwellSolver::GetEField ( )
inline

Definition at line 70 of file maxwell_solver.hpp.

◆ GetEnergy()

real_t mfem::electromagnetics::MaxwellSolver::GetEnergy ( ) const

Definition at line 536 of file maxwell_solver.cpp.

◆ GetLogging()

int mfem::electromagnetics::MaxwellSolver::GetLogging ( ) const
inline

Definition at line 50 of file maxwell_solver.hpp.

◆ GetMaximumTimeStep()

real_t mfem::electromagnetics::MaxwellSolver::GetMaximumTimeStep ( ) const

Definition at line 481 of file maxwell_solver.cpp.

◆ GetNegCurl()

Operator & mfem::electromagnetics::MaxwellSolver::GetNegCurl ( )
inline

Definition at line 68 of file maxwell_solver.hpp.

◆ GetProblemSize()

HYPRE_BigInt mfem::electromagnetics::MaxwellSolver::GetProblemSize ( )

Definition at line 338 of file maxwell_solver.cpp.

◆ ImplicitSolve()

void mfem::electromagnetics::MaxwellSolver::ImplicitSolve ( const real_t dt,
const Vector & x,
Vector & k )
virtual

Solve the equation: k = f(x + dt k, t), for the unknown k at the current time t.

For general F and G, the equation for k becomes: F(x + dt k, k, t) = G(x + dt k, t).

The input vector x corresponds to time index (or cycle) n, while the currently set time, t, and the result vector k correspond to time index n+1. The time step dt corresponds to the time interval between cycles n and n+1.

This method allows for the abstract implementation of some time integration methods, including diagonal implicit Runge-Kutta (DIRK) methods and the backward Euler method in particular.

If not re-implemented, this method simply generates an error.

Reimplemented from mfem::TimeDependentOperator.

Definition at line 378 of file maxwell_solver.cpp.

◆ InitializeGLVis()

void mfem::electromagnetics::MaxwellSolver::InitializeGLVis ( )

Definition at line 584 of file maxwell_solver.cpp.

◆ Mult()

void mfem::electromagnetics::MaxwellSolver::Mult ( const Vector & x,
Vector & y ) const
virtual

Perform the action of the operator: y = k = f(x, t), where k solves the algebraic equation F(x, k, t) = G(x, t) and t is the current time.

Reimplemented from mfem::TimeDependentOperator.

Definition at line 372 of file maxwell_solver.cpp.

◆ PrintSizes()

void mfem::electromagnetics::MaxwellSolver::PrintSizes ( )

Definition at line 344 of file maxwell_solver.cpp.

◆ RegisterVisItFields()

void mfem::electromagnetics::MaxwellSolver::RegisterVisItFields ( VisItDataCollection & visit_dc)

Definition at line 549 of file maxwell_solver.cpp.

◆ SetInitialBField()

void mfem::electromagnetics::MaxwellSolver::SetInitialBField ( VectorCoefficient & BFieldCoef)

Definition at line 364 of file maxwell_solver.cpp.

◆ SetInitialEField()

void mfem::electromagnetics::MaxwellSolver::SetInitialEField ( VectorCoefficient & EFieldCoef)

Definition at line 356 of file maxwell_solver.cpp.

◆ SetLogging()

void mfem::electromagnetics::MaxwellSolver::SetLogging ( int logging)
inline

Definition at line 51 of file maxwell_solver.hpp.

◆ SyncGridFuncs()

void mfem::electromagnetics::MaxwellSolver::SyncGridFuncs ( )

Definition at line 474 of file maxwell_solver.cpp.

◆ WriteVisItFields()

void mfem::electromagnetics::MaxwellSolver::WriteVisItFields ( int it = 0)

Definition at line 562 of file maxwell_solver.cpp.


The documentation for this class was generated from the following files: