MFEM v4.7.0
Finite element discretization library
Loading...
Searching...
No Matches
mfem::LORSolver< SolverType > Class Template Reference

Represents a solver of type SolverType created using the low-order refined version of the given BilinearForm or ParBilinearForm. More...

#include <lor.hpp>

Inheritance diagram for mfem::LORSolver< SolverType >:
[legend]
Collaboration diagram for mfem::LORSolver< SolverType >:
[legend]

Public Member Functions

 LORSolver (BilinearForm &a_ho, const Array< int > &ess_tdof_list, int ref_type=BasisType::GaussLobatto)
 Create a solver of type SolverType, formed using the assembled SparseMatrix of the LOR version of a_ho.
 
 LORSolver (ParBilinearForm &a_ho, const Array< int > &ess_tdof_list, int ref_type=BasisType::GaussLobatto)
 Create a solver of type SolverType, formed using the assembled HypreParMatrix of the LOR version of a_ho.
 
template<typename... Args>
 LORSolver (const Operator &op, LORBase &lor_, Args &&... args)
 Create a solver of type SolverType using Operator op and arguments args.
 
template<typename... Args>
 LORSolver (LORBase &lor_, Args &&... args)
 Create a solver of type SolverType using the assembled LOR operator represented by lor_.
 
void SetOperator (const Operator &op)
 Set/update the solver for the given operator.
 
void Mult (const Vector &x, Vector &y) const
 Operator application: y=A(x).
 
SolverType & GetSolver ()
 Access the underlying solver.
 
const SolverType & GetSolver () const
 Access the underlying solver.
 
const LORBaseGetLOR () const
 Access the LOR discretization object.
 
 ~LORSolver ()
 
- Public Member Functions inherited from mfem::Solver
 Solver (int s=0, bool iter_mode=false)
 Initialize a square Solver with size s.
 
 Solver (int h, int w, bool iter_mode=false)
 Initialize a Solver with height h and width w.
 
- Public Member Functions inherited from mfem::Operator
void InitTVectors (const Operator *Po, const Operator *Ri, const Operator *Pi, Vector &x, Vector &b, Vector &X, Vector &B) const
 Initializes memory for true vectors of linear system.
 
 Operator (int s=0)
 Construct a square Operator with given size s (default 0).
 
 Operator (int h, int w)
 Construct an Operator with the given height (output size) and width (input size).
 
int Height () const
 Get the height (size of output) of the Operator. Synonym with NumRows().
 
int NumRows () const
 Get the number of rows (size of output) of the Operator. Synonym with Height().
 
int Width () const
 Get the width (size of input) of the Operator. Synonym with NumCols().
 
int NumCols () const
 Get the number of columns (size of input) of the Operator. Synonym with Width().
 
virtual MemoryClass GetMemoryClass () const
 Return the MemoryClass preferred by the Operator.
 
virtual void MultTranspose (const Vector &x, Vector &y) const
 Action of the transpose operator: y=A^t(x). The default behavior in class Operator is to generate an error.
 
virtual void AddMult (const Vector &x, Vector &y, const real_t a=1.0) const
 Operator application: y+=A(x) (default) or y+=a*A(x).
 
virtual void AddMultTranspose (const Vector &x, Vector &y, const real_t a=1.0) const
 Operator transpose application: y+=A^t(x) (default) or y+=a*A^t(x).
 
virtual void ArrayMult (const Array< const Vector * > &X, Array< Vector * > &Y) const
 Operator application on a matrix: Y=A(X).
 
virtual void ArrayMultTranspose (const Array< const Vector * > &X, Array< Vector * > &Y) const
 Action of the transpose operator on a matrix: Y=A^t(X).
 
virtual void ArrayAddMult (const Array< const Vector * > &X, Array< Vector * > &Y, const real_t a=1.0) const
 Operator application on a matrix: Y+=A(X) (default) or Y+=a*A(X).
 
virtual void ArrayAddMultTranspose (const Array< const Vector * > &X, Array< Vector * > &Y, const real_t a=1.0) const
 Operator transpose application on a matrix: Y+=A^t(X) (default) or Y+=a*A^t(X).
 
virtual OperatorGetGradient (const Vector &x) const
 Evaluate the gradient operator at the point x. The default behavior in class Operator is to generate an error.
 
virtual void AssembleDiagonal (Vector &diag) const
 Computes the diagonal entries into diag. Typically, this operation only makes sense for linear Operators. In some cases, only an approximation of the diagonal is computed.
 
virtual const OperatorGetProlongation () const
 Prolongation operator from linear algebra (linear system) vectors, to input vectors for the operator. NULL means identity.
 
virtual const OperatorGetRestriction () const
 Restriction operator from input vectors for the operator to linear algebra (linear system) vectors. NULL means identity.
 
virtual const OperatorGetOutputProlongation () const
 Prolongation operator from linear algebra (linear system) vectors, to output vectors for the operator. NULL means identity.
 
virtual const OperatorGetOutputRestrictionTranspose () const
 Transpose of GetOutputRestriction, directly available in this form to facilitate matrix-free RAP-type operators.
 
virtual const OperatorGetOutputRestriction () const
 Restriction operator from output vectors for the operator to linear algebra (linear system) vectors. NULL means identity.
 
void FormLinearSystem (const Array< int > &ess_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B, int copy_interior=0)
 Form a constrained linear system using a matrix-free approach.
 
void FormRectangularLinearSystem (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B)
 Form a column-constrained linear system using a matrix-free approach.
 
virtual void RecoverFEMSolution (const Vector &X, const Vector &b, Vector &x)
 Reconstruct a solution vector x (e.g. a GridFunction) from the solution X of a constrained linear system obtained from Operator::FormLinearSystem() or Operator::FormRectangularLinearSystem().
 
void FormSystemOperator (const Array< int > &ess_tdof_list, Operator *&A)
 Return in A a parallel (on truedofs) version of this square operator.
 
void FormRectangularSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Operator *&A)
 Return in A a parallel (on truedofs) version of this rectangular operator (including constraints).
 
void FormDiscreteOperator (Operator *&A)
 Return in A a parallel (on truedofs) version of this rectangular operator.
 
void PrintMatlab (std::ostream &out, int n, int m=0) const
 Prints operator with input size n and output size m in Matlab format.
 
virtual void PrintMatlab (std::ostream &out) const
 Prints operator in Matlab format.
 
virtual ~Operator ()
 Virtual destructor.
 
Type GetType () const
 Return the type ID of the Operator class.
 

Protected Attributes

LORBaselor
 
bool own_lor = true
 
SolverType solver
 
- Protected Attributes inherited from mfem::Operator
int height
 Dimension of the output / number of rows in the matrix.
 
int width
 Dimension of the input / number of columns in the matrix.
 

Additional Inherited Members

- Public Types inherited from mfem::Operator
enum  DiagonalPolicy { DIAG_ZERO , DIAG_ONE , DIAG_KEEP }
 Defines operator diagonal policy upon elimination of rows and/or columns. More...
 
enum  Type {
  ANY_TYPE , MFEM_SPARSEMAT , Hypre_ParCSR , PETSC_MATAIJ ,
  PETSC_MATIS , PETSC_MATSHELL , PETSC_MATNEST , PETSC_MATHYPRE ,
  PETSC_MATGENERIC , Complex_Operator , MFEM_ComplexSparseMat , Complex_Hypre_ParCSR ,
  Complex_DenseMat , MFEM_Block_Matrix , MFEM_Block_Operator
}
 Enumeration defining IDs for some classes derived from Operator. More...
 
- Public Attributes inherited from mfem::Solver
bool iterative_mode
 If true, use the second argument of Mult() as an initial guess.
 
- Protected Member Functions inherited from mfem::Operator
void FormConstrainedSystemOperator (const Array< int > &ess_tdof_list, ConstrainedOperator *&Aout)
 see FormSystemOperator()
 
void FormRectangularConstrainedSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, RectangularConstrainedOperator *&Aout)
 see FormRectangularSystemOperator()
 
OperatorSetupRAP (const Operator *Pi, const Operator *Po)
 Returns RAP Operator of this, using input/output Prolongation matrices Pi corresponds to "P", Po corresponds to "Rt".
 

Detailed Description

template<typename SolverType>
class mfem::LORSolver< SolverType >

Represents a solver of type SolverType created using the low-order refined version of the given BilinearForm or ParBilinearForm.

Note
To achieve good solver performance, the high-order finite element space should use BasisType::GaussLobatto for H1 discretizations, and basis pair (BasisType::GaussLobatto, BasisType::IntegratedGLL) for Nedelec and Raviart-Thomas elements.

Definition at line 203 of file lor.hpp.

Constructor & Destructor Documentation

◆ LORSolver() [1/4]

template<typename SolverType >
mfem::LORSolver< SolverType >::LORSolver ( BilinearForm & a_ho,
const Array< int > & ess_tdof_list,
int ref_type = BasisType::GaussLobatto )
inline

Create a solver of type SolverType, formed using the assembled SparseMatrix of the LOR version of a_ho.

See also
LORDiscretization

Definition at line 212 of file lor.hpp.

◆ LORSolver() [2/4]

template<typename SolverType >
mfem::LORSolver< SolverType >::LORSolver ( ParBilinearForm & a_ho,
const Array< int > & ess_tdof_list,
int ref_type = BasisType::GaussLobatto )
inline

Create a solver of type SolverType, formed using the assembled HypreParMatrix of the LOR version of a_ho.

See also
ParLORDiscretization

Definition at line 222 of file lor.hpp.

◆ LORSolver() [3/4]

template<typename SolverType >
template<typename... Args>
mfem::LORSolver< SolverType >::LORSolver ( const Operator & op,
LORBase & lor_,
Args &&... args )
inline

Create a solver of type SolverType using Operator op and arguments args.

Definition at line 233 of file lor.hpp.

◆ LORSolver() [4/4]

template<typename SolverType >
template<typename... Args>
mfem::LORSolver< SolverType >::LORSolver ( LORBase & lor_,
Args &&... args )
inline

Create a solver of type SolverType using the assembled LOR operator represented by lor_.

The given args will be used as arguments to the solver constructor.

Definition at line 245 of file lor.hpp.

◆ ~LORSolver()

template<typename SolverType >
mfem::LORSolver< SolverType >::~LORSolver ( )
inline

Definition at line 266 of file lor.hpp.

Member Function Documentation

◆ GetLOR()

template<typename SolverType >
const LORBase & mfem::LORSolver< SolverType >::GetLOR ( ) const
inline

Access the LOR discretization object.

Definition at line 264 of file lor.hpp.

◆ GetSolver() [1/2]

template<typename SolverType >
SolverType & mfem::LORSolver< SolverType >::GetSolver ( )
inline

Access the underlying solver.

Definition at line 258 of file lor.hpp.

◆ GetSolver() [2/2]

template<typename SolverType >
const SolverType & mfem::LORSolver< SolverType >::GetSolver ( ) const
inline

Access the underlying solver.

Definition at line 261 of file lor.hpp.

◆ Mult()

template<typename SolverType >
void mfem::LORSolver< SolverType >::Mult ( const Vector & x,
Vector & y ) const
inlinevirtual

Operator application: y=A(x).

Implements mfem::Operator.

Definition at line 255 of file lor.hpp.

◆ SetOperator()

template<typename SolverType >
void mfem::LORSolver< SolverType >::SetOperator ( const Operator & op)
inlinevirtual

Set/update the solver for the given operator.

Implements mfem::Solver.

Definition at line 248 of file lor.hpp.

Member Data Documentation

◆ lor

template<typename SolverType >
LORBase* mfem::LORSolver< SolverType >::lor
protected

Definition at line 206 of file lor.hpp.

◆ own_lor

template<typename SolverType >
bool mfem::LORSolver< SolverType >::own_lor = true
protected

Definition at line 207 of file lor.hpp.

◆ solver

template<typename SolverType >
SolverType mfem::LORSolver< SolverType >::solver
protected

Definition at line 208 of file lor.hpp.


The documentation for this class was generated from the following file: