MFEM  v4.6.0
Finite element discretization library
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234567]
 Cmfem::AbstractErrorEstimatorBase class for all error estimators
 Cmfem::navier::AccelTerm_TContainer for an acceleration term
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< Ops, dummy >This struct implements the input (Eval, EvalSerialized) and output (Assemble, AssembleSerialized) operations for the given Ops. Ops is "bitwise or" of constants from the enum InOutData
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< 0, dummy >
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< 1, dummy >
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< 2, dummy >
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< 3, dummy >
 Cmfem::AdaptivityEvaluator
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< IOData, impl_traits_t >Auxiliary templated struct AData, used by the Eval() and Assemble() methods
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< 0, it_t >
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< 1, it_t >
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< 2, it_t >
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< 3, it_t >
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< IData|OData, it_t >
 Cmfem::adios2stream
 Cmfem::AlgoimIntegrationRule
 CGecko::Arc
 Cmfem::Array< T >
 Cmfem::Array2D< T >Dynamic 2D array using row-major layout
 Cmfem::Array2D< const mfem::IntegrationRule *>
 Cmfem::Array2D< double >
 Cmfem::Array2D< int >
 Cmfem::Array2D< mfem::Array< mfem::BilinearFormIntegrator * > * >
 Cmfem::Array2D< mfem::Operator *>
 Cmfem::Array2D< mfem::OperatorHandle *>
 Cmfem::Array2D< mfem::SparseMatrix *>
 Cmfem::Array2D< mfem::Vector *>
 Cmfem::Array3D< T >
 Cmfem::Array3D< int >
 Cmfem::Array< Basis * >
 Cmfem::Array< bool >
 Cmfem::Array< CeedOperator >
 Cmfem::Array< char >
 Cmfem::Array< const mfem::IntegrationRule *>
 Cmfem::Array< const mfem::KnotVector *>
 Cmfem::Array< const mfem::Operator *>
 Cmfem::Array< const mfem::SparseMatrix *>
 Cmfem::Array< Dist_Level_Set_Coefficient *>
 Cmfem::Array< double * >
 Cmfem::Array< double >
 Cmfem::Array< FiniteElementSpace *>
 Cmfem::Array< Geometry::Type >
 Cmfem::Array< GroupId >
 Cmfem::Array< HYPRE_BigInt >
 Cmfem::Array< HYPRE_ParVector >
 Cmfem::Array< int >
 Cmfem::Array< IntegrationPoint >
 Cmfem::Array< mfem::Array< int > *>
 Cmfem::Array< mfem::Array< mfem::BilinearFormIntegrator * > *>
 Cmfem::Array< mfem::Array< mfem::LinearFormIntegrator * > * >
 Cmfem::Array< mfem::BilinearForm *>
 Cmfem::Array< mfem::BilinearFormIntegrator * >
 Cmfem::Array< mfem::BilinearFormIntegrator *>
 Cmfem::Array< mfem::BlockNonlinearFormIntegrator *>
 Cmfem::Array< mfem::BlockOperator *>
 Cmfem::Array< mfem::ceed::AlgebraicInterpolation *>
 Cmfem::Array< mfem::Coefficient *>
 Cmfem::Array< mfem::ComplexDenseMatrix * >
 Cmfem::Array< mfem::Connection >
 Cmfem::Array< mfem::DeltaLFIntegrator *>
 Cmfem::Array< mfem::DenseMatrix * >
 Cmfem::Array< mfem::DenseMatrix *>
 Cmfem::Array< mfem::DofToQuad *>
 Cmfem::Array< mfem::DofTransformation *>
 Cmfem::Array< mfem::Element *>
 Cmfem::Array< mfem::Eliminator *>
 Cmfem::Array< mfem::Embedding >
 Cmfem::Array< mfem::FaceGeometricFactors *>
 Cmfem::Array< mfem::FaceQuadratureInterpolator *>
 Cmfem::Array< mfem::FiniteElementCollection *>
 Cmfem::Array< mfem::FiniteElementSpace * >
 Cmfem::Array< mfem::FiniteElementSpace *>
 Cmfem::Array< mfem::GeometricFactors *>
 Cmfem::Array< mfem::GridFunction *>
 Cmfem::Array< mfem::IntegerSet *>
 Cmfem::Array< mfem::IntegrationPoint >
 Cmfem::Array< mfem::IntegrationRule *>
 Cmfem::Array< mfem::InterpConfig >
 Cmfem::Array< mfem::KnotVector *>
 Cmfem::Array< mfem::LinearFormIntegrator * >
 Cmfem::Array< mfem::LinearFormIntegrator *>
 Cmfem::Array< mfem::Mesh *>
 Cmfem::Array< mfem::Mesh::FaceInfo >
 Cmfem::Array< mfem::Mesh::NCFaceInfo >
 Cmfem::Array< mfem::MeshOperator *>
 Cmfem::Array< mfem::NCInterpConfig >
 Cmfem::Array< mfem::NCMesh::Element *>
 Cmfem::Array< mfem::NCMesh::Face *>
 Cmfem::Array< mfem::NCMesh::Master >
 Cmfem::Array< mfem::NCMesh::MeshId >
 Cmfem::Array< mfem::NCMesh::Node *>
 Cmfem::Array< mfem::NCMesh::Slave >
 Cmfem::Array< mfem::NonlinearFormIntegrator *>
 Cmfem::Array< mfem::NURBSPatch *>
 Cmfem::Array< mfem::Operator *>
 Cmfem::Array< mfem::OperatorHandle *>
 Cmfem::Array< mfem::ParametricBNLFormIntegrator *>
 Cmfem::Array< mfem::ParFiniteElementSpace * >
 Cmfem::Array< mfem::ParFiniteElementSpace *>
 Cmfem::Array< mfem::ParGridFunction *>
 Cmfem::Array< mfem::ParMesh::Vert3 >
 Cmfem::Array< mfem::ParMesh::Vert4 >
 Cmfem::Array< mfem::QuadratureInterpolator *>
 Cmfem::Array< mfem::RefinedGeometry *>
 Cmfem::Array< mfem::Refinement >
 Cmfem::Array< mfem::Solver *>
 Cmfem::Array< mfem::SparseMatrix *>
 Cmfem::Array< mfem::TMOP_Integrator *>
 Cmfem::Array< mfem::TMOP_QualityMetric *>
 Cmfem::Array< mfem::TransposeOperator *>
 Cmfem::Array< mfem::Triple< int, int, int > >
 Cmfem::Array< mfem::Vector * >
 Cmfem::Array< mfem::Vector *>
 Cmfem::Array< mfem::Vertex >
 Cmfem::Array< Option >
 Cmfem::Array< ParFiniteElementSpace *>
 Cmfem::Array< socketstream *>
 Cmfem::Array< T *>
 Cmfem::Array< unsigned char >
 Cmfem::Array< unsigned int >
 Cmfem::AssignOp
 Cmfem::AutoSIMD< scalar_t, S, align_bytes_ >
 Cmfem::AutoSIMD< double, 2, 16 >
 Cmfem::AutoSIMD< double, 4, 32 >
 Cmfem::AutoSIMD< double, 8, 64 >
 Cmfem::AutoSIMDTraits< complex_t, real_t >
 Cmfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >::Aux< is_const, dummy >
 Cmfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >::Aux< false, dummy >
 Cmfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >::Aux< true, dummy >
 Cmfem::BackendMFEM backends
 Cmfem::BaseKDTreeNodalProjectionBase class for KDTreeNodalProjection
 Cmfem::BaseQFunctionBase class for representing function at integration points
 Cmfem::Poly_1D::BasisClass for evaluating 1D nodal, positive (Bernstein), or integrated (Gerritsma) bases
 Cmfem::ceed::BasisHash
 Cmfem::BasisTypePossible basis types. Note that not all elements can use all BasisType(s)
 Cmfem::BatchedLOR_ADS
 Cmfem::BatchedLOR_AMS
 Cmfem::BatchedLORAssemblyEfficient batched assembly of LOR discretizations on device
 Cmfem::BatchedLORKernelAbstract base class for the batched LOR assembly kernels
 Cmfem::BlockArray< T >
 Cmfem::BlockArray< mfem::NCMesh::Element >
 Cmfem::BlockArray< mfem::NCMesh::Face >
 Cmfem::BlockArray< mfem::NCMesh::Node >
 Cmfem::BlockNonlinearFormIntegrator
 Cmfem::BlockStaticCondensationClass that performs static condensation of interior dofs for multiple FE spaces. This class is used in class DPGWeakFrom. It is suitable for systems resulting from the discretization of multiple FE spaces. It eliminates the dofs associated with the interior of the elements and returns the reduced system which contains only the interfacial dofs. The ordering of the dofs in the matrix is implied by the ordering given by the FE spaces, but there is no assumption on the ordering of the FE spaces. This class handles both serial and parallel FE spaces
 Cmfem::spde::Boundary
 Cmfem::kernels::InvariantsEvaluator2D::Buffers
 Cmfem::kernels::InvariantsEvaluator3D::Buffers
 Cmfem::CartesianPMLClass for setting up a simple Cartesian PML region
 Cmfem::CoarseFineTransformationsDefines the coarse-fine transformations of all fine elements
 Cmfem::ceed::Coefficient
 Cmfem::CoefficientBase class Coefficients that optionally depend on space and time. These are used by the BilinearFormIntegrator, LinearFormIntegrator, and NonlinearFormIntegrator classes to represent the physical coefficients in the PDEs that are being discretized. This class can also be used in a more general way to represent functions that don't necessarily belong to a FE space, e.g., to project onto GridFunctions to use as initial conditions, exact solutions, etc. See, e.g., ex4 or ex22 for these uses
 Cmfem::TMassKernel< SDim, Dim, complex_t >::CoefficientEval< IR, coeff_t, impl_traits_t >
 Cmfem::TDiffusionKernel< 1, 1, complex_t >::CoefficientEval< IR, coeff_t, impl_traits_t >
 Cmfem::TDiffusionKernel< 2, 2, complex_t >::CoefficientEval< IR, coeff_t, impl_traits_t >
 Cmfem::TDiffusionKernel< 3, 3, complex_t >::CoefficientEval< IR, coeff_t, impl_traits_t >
 CGecko::Node::Comparator
 Cmfem::ComplexBlockStaticCondensationClass that performs static condensation of interior dofs for multiple FE spaces for complex systems (see BlockStaticCondensation). It's used by the class ComplexDPGWeakForm
 Cmfem::ComplexDPGWeakFormClass representing the DPG weak formulation for complex valued systems (see the class DPGWeakForm)
 Cmfem::ComplexFactors
 Cmfem::ConnectionHelper struct for defining a connectivity table, see Table::MakeFromList
 Cmfem::Geometry::Constants< Geom >
 Cmfem::Geometry::Constants< Geometry::CUBE >
 Cmfem::Geometry::Constants< Geometry::POINT >
 Cmfem::Geometry::Constants< Geometry::PRISM >
 Cmfem::Geometry::Constants< Geometry::PYRAMID >
 Cmfem::Geometry::Constants< Geometry::SEGMENT >
 Cmfem::Geometry::Constants< Geometry::SQUARE >
 Cmfem::Geometry::Constants< Geometry::TETRAHEDRON >
 Cmfem::Geometry::Constants< Geometry::TRIANGLE >
 Cmfem::ConvergenceStudyClass to compute error and convergence rates. It supports H1, H(curl) (ND elements), H(div) (RT elements) and L2 (DG)
 Cmfem::CutAll subclasses of Cut will implement intersection routines and quadrature point generation within the cut in the intersection of two elements. Although, this class is designed to support MortarAssembler and ParMortarAssembler, it can be used for any problem requiring to perform Petrov-Galerkin formulations on non-matching elements
 Cmfem::CuWrap< Dim >
 Cmfem::CuWrap< 1 >
 Cmfem::CuWrap< 2 >
 Cmfem::CuWrap< 3 >
 Cmfem::DataCollection
 CDense
 Cmfem::DenseMatrixEigensystem
 Cmfem::DenseMatrixGeneralizedEigensystem
 Cmfem::DenseMatrixSVDClass for Singular Value Decomposition of a DenseMatrix
 Cmfem::DenseTensorRank 3 tensor (array of matrices)
 Cmfem::DeviceThe MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as CUDA, OCCA, RAJA and OpenMP
 Cmfem::DeviceDofQuadLimitsMaximum number of 1D DOFs or quadrature points for the current runtime configuration of the Device (used in fallback kernels)
 Cmfem::DeviceTensor< Dim, Scalar >A basic generic Tensor class, appropriate for use on the GPU
 Cmfem::blocksolvers::DFSDataData for the divergence free solver
 Cmfem::blocksolvers::DFSSpaces
 Cmfem::DGIndexer< FE >
 Cmfem::DiffusionSolverClass for solving Poisson's equation:
 Cmfem::TFunctionCoefficient< Func, complex_t >::Dim< dim, dummy >
 Cmfem::TFunctionCoefficient< Func, complex_t >::Dim< 1, dummy >
 Cmfem::TFunctionCoefficient< Func, complex_t >::Dim< 2, dummy >
 Cmfem::TFunctionCoefficient< Func, complex_t >::Dim< 3, dummy >
 Cmfem::DiscreteUpwindLOSolver
 Cmfem::common::DistanceSolver
 Cmfem::DofToQuadStructure representing the matrices/tensors needed to evaluate (in reference space) the values, gradients, divergences, or curls of a FiniteElement at a the quadrature points of a given IntegrationRule
 Cmfem::DPGWeakFormClass representing the DPG weak formulation. Given the variational formulation a(u,v) = b(v), (or A u = b, where <Au,v> = a(u,v)) this class forms the DPG linear system A^T G^-1 A u = A^T G^-1 b This system results from the minimum residual formulation u = argmin_w ||G^-1(b - Aw)||. Here G is a symmetric positive definite matrix resulting from the discretization of the Riesz operator on the test space. Since the test space is broken (discontinuous), G is defined and inverted element-wise and the assembly of the global system is performed in the same manner as the standard FEM method. Note that DPGWeakForm can handle multiple Finite Element spaces
 Cmfem::DSTable
 Cmfem::DynamicVectorLayout
 Cmfem::EdgeClass that implements an edge defined by a start and end point
 Cmfem::ElementAbstract data type element
 Cmfem::NCMesh::Element
 Cmfem::ElementDofIndexer< FE >
 Cmfem::ParNCMesh::ElementSet
 Cmfem::ElementTransformation
 Cmfem::EliminatorPerform elimination of a single constraint
 Cmfem::EmbeddingDefines the position of a fine element within a coarse element
 CEnableCreateMethod
 CEnableLinOp
 Cstd::exceptionSTL class
 Cmfem::Extrapolator
 Cmfem::TMassKernel< SDim, Dim, complex_t >::f_asm_data< qpts >Partially assembled data type for one element with the given number of quadrature points. This type is used in full element matrix assembly
 Cmfem::TDiffusionKernel< 1, 1, complex_t >::f_asm_data< qpts >Partially assembled data type for one element with the given number of quadrature points. This type is used in full element matrix assembly
 Cmfem::TDiffusionKernel< 2, 2, complex_t >::f_asm_data< qpts >Partially assembled data type for one element with the given number of quadrature points. This type is used in full element matrix assembly. Stores one general (non-symmetric) 2 x 2 matrix per point
 Cmfem::TDiffusionKernel< 3, 3, complex_t >::f_asm_data< qpts >Partially assembled data type for one element with the given number of quadrature points. This type is used in full element matrix assembly. Stores one general (non-symmetric) 3 x 3 matrix per point
 Cmfem::FaceGeometricFactorsStructure for storing face geometric factors: coordinates, Jacobians, determinants of the Jacobians, and normal vectors
 Cmfem::Mesh::FaceInfoThis structure stores the low level information necessary to interpret the configuration of elements on a specific face. This information can be accessed using methods like GetFaceElements(), GetFaceInfos(), FaceIsInterior(), etc
 Cmfem::Mesh::FaceInformationThis structure is used as a human readable output format that decipheres the information contained in Mesh::FaceInfo when using the Mesh::GetFaceInformation() method
 Cmfem::FaceQuadratureInterpolatorA class that performs interpolation from a face E-vector to quadrature point values and/or derivatives (Q-vectors) on the faces
 Cmfem::Factors
 Cmfem::FieldEvaluator_base< FESpace_t, VecLayout_t, IR, complex_t, real_t >Field evaluators – values of a given global FE grid function This is roughly speaking a templated version of GridFunction
 Cmfem::FindPointsGSLIBFindPointsGSLIB can robustly evaluate a GridFunction on an arbitrary collection of points. There are three key functions in FindPointsGSLIB:
 Cmfem::FiniteElementAbstract class for all finite elements
 Cmfem::FiniteElementCollectionCollection of finite elements from the same family in multiple dimensions. This class is used to match the degrees of freedom of a FiniteElementSpace between elements, and to provide the finite element restriction from an element to its boundary
 Cmfem::FiniteElementSpaceClass FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of degrees of freedom
 Cmfem::FiniteElementSpaceHierarchy
 CGecko::Functional
 Cmfem::FunctionSpaceDescribes the function space on each element
 Cmfem::GenericIntegrationRule< G, Q, Order, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 1, 0, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 1, 1, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 11, 4, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 14, 5, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 24, 6, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 31, 7, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 4, 2, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 5, 3, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TRIANGLE, 1, 0, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TRIANGLE, 1, 1, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TRIANGLE, 12, 6, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TRIANGLE, 12, 7, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TRIANGLE, 3, 2, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TRIANGLE, 4, 3, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TRIANGLE, 6, 4, real_t >
 Cmfem::GenericIntegrationRule< Geometry::TRIANGLE, 7, 5, real_t >
 Cmfem::GeometricFactorsStructure for storing mesh geometric factors: coordinates, Jacobians, and determinants of the Jacobians
 Cmfem::Geometry
 Cmfem::GeometryRefiner
 Cmfem::NCMesh::GeomInfoThis holds in one place the constants about the geometries we support
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >::Get< coeff_t, kernel_t >
 Cmfem::spde::GFTransformerBase class to transform a grid function
 Cmfem::Ginkgo::GinkgoExecutor
 Cmfem::Ginkgo::gko_mfem_destroy< T >
 Cmfem::GnuTLS_global_state
 Cmfem::GnuTLS_session_params
 Cmfem::GnuTLS_status
 CGecko::Graph
 Cmfem::GridTransferBase class for transfer algorithms that construct transfer Operators between two finite element (FE) spaces
 Cmfem::GroupCommunicatorCommunicator performing operations within groups defined by a GroupTopology with arbitrary-size data associated with each group
 Cmfem::GroupTopology
 Cmfem::H1_FiniteElement< G, P >
 Cmfem::H1_FiniteElement< Geometry::CUBE, P >
 Cmfem::H1_FiniteElement< Geometry::SEGMENT, P >
 Cmfem::H1_FiniteElement< Geometry::SQUARE, P >
 Cmfem::H1_FiniteElement< Geometry::TETRAHEDRON, P >
 Cmfem::H1_FiniteElement< Geometry::TRIANGLE, P >
 Cmfem::Hashed2
 Cmfem::Hashed4
 Cmfem::HashFunctionHash function for data sequences
 ChiopInterfaceDenseConstraints
 Cmfem::HipWrap< Dim >
 Cmfem::HipWrap< 1 >
 Cmfem::HipWrap< 2 >
 Cmfem::HipWrap< 3 >
 Cmfem::Hybridization
 Cmfem::HyperelasticModelAbstract class for hyperelastic models
 Cmfem::HypreA simple singleton class for hypre's global settings, that 1) calls HYPRE_Init() and sets some GPU-relevant options at construction and 2) calls HYPRE_Finalize() at destruction
 Cmfem::HypreAME
 Cmfem::HypreLOBPCG
 Cmfem::Init< N, Dim, T, Args >A class to initialize the size of a Tensor
 Cmfem::Init< Dim, Dim, T, Args... >
 Cmfem::kernels::Instances< K, N >Instances
 Cmfem::kernels::Instances< K, 1 >
 Cmfem::IntegerSetA set of integers
 Cmfem::IntegrationPointClass for integration point with weight
 Cmfem::IntegrationPointTransformation
 Cmfem::IntegrationRulesContainer class for integration rules
 Cmfem::InterpConfig
 Cmfem::InterpolationManagerThis class manages the storage and computation of the interpolations from master (coarse) face to slave (fine) face
 Cmfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >
 Cmfem::kernels::InvariantsEvaluator2D
 Cmfem::InvariantsEvaluator2D< scalar_t, scalar_ops >Auxiliary class for evaluating the 2x2 matrix invariants and their first and second derivatives
 Cmfem::InvariantsEvaluator2D< double >
 Cmfem::kernels::InvariantsEvaluator3D
 Cmfem::InvariantsEvaluator3D< scalar_t, scalar_ops >Auxiliary class for evaluating the 3x3 matrix invariants and their first and second derivatives
 Cmfem::InvariantsEvaluator3D< double >
 Cmfem::InverseElementTransformationThe inverse transformation of a given ElementTransformation
 Cstd::ios_baseSTL class
 Ciostream
 Cmfem::isockstream
 Cmfem::IterativeSolverMonitorAbstract base class for an iterative solver monitor
 Cmfem::BlockArray< T >::iterator_base< cA, cT >
 Cmfem::BlockArray< T >::iterator_base< BlockArray, T >
 Cmfem::BlockArray< T >::iterator_base< const BlockArray, const T >
 Cmfem::blocksolvers::IterSolveParametersParameters for iterative solver
 Cmfem::JumpScaling
 Cmfem::KDTree< Tindex, Tfloat, ndim, Tnorm >
 Cmfem::KDTree< int, double, kdim >
 Cmfem::TIntegrator< coeff_t, kernel_t >::kernel< SDim, Dim, complex_t >
 Cmfem::kernels::KernelMap< K >KernelMap class which creates an unordered_map of the Keys/Kernels
 Cmfem::FiniteElementSpace::key_hash
 Cmfem::KnotVector
 Cmfem::L2_FiniteElement< G, P >
 Cmfem::L2_FiniteElement_base< G, P, L2_FE_type, L2Pos_FE_type, DOFS, TP >
 Cmfem::L2_FiniteElement_base< Geometry::CUBE, P, L2_HexahedronElement, L2Pos_HexahedronElement,(P+1) *(P+1) *(P+1), true >
 Cmfem::L2_FiniteElement_base< Geometry::SEGMENT, P, L2_SegmentElement, L2Pos_SegmentElement, P+1, true >
 Cmfem::L2_FiniteElement_base< Geometry::SQUARE, P, L2_QuadrilateralElement, L2Pos_QuadrilateralElement,(P+1) *(P+1), true >
 Cmfem::L2_FiniteElement_base< Geometry::TETRAHEDRON, P, L2_TetrahedronElement, L2Pos_TetrahedronElement,((P+1) *(P+2) *(P+3))/6, false >
 Cmfem::L2_FiniteElement_base< Geometry::TRIANGLE, P, L2_TriangleElement, L2Pos_TriangleElement,((P+1) *(P+2))/2, false >
 Cmfem::LinearElasticitySolverClass for solving linear elasticity:
 CLinearElasticMaterial< dim >Linear elastic material
 Cmfem::LinearFormExtensionClass extending the LinearForm class to support assembly on devices
 Cmfem::LinearFormIntegratorAbstract base class LinearFormIntegrator
 Cmfem::ListOfIntegerSetsList of integer sets
 CLogger
 Cmfem::LORBaseAbstract base class for LORDiscretization and ParLORDiscretization classes, which construct low-order refined versions of bilinear forms
 Cmfem::MaterialTopologyVirtual class to define the interface for defining the material topology
 Cmfem::MatrixCoefficientBase class for Matrix Coefficients that optionally depend on time and space
 Cmfem::MemAlloc< Elem, Num >
 Cmfem::MemAlloc< mfem::STable3DNode, 1024 >
 Cmfem::MemAlloc< mfem::Tetrahedron, 1024 >
 Cmfem::MemAlloc< Node, 1024 >
 Cmfem::MemAllocNode< Elem, Num >
 Cmfem::MemAllocNode< mfem::STable3DNode, Num >
 Cmfem::MemAllocNode< mfem::Tetrahedron, Num >
 Cmfem::MemAllocNode< Node, Num >
 Cmfem::Memory< T >Class used by MFEM to store pointers to host and/or device memory
 Cmfem::Memory< Basis *>
 Cmfem::Memory< bool >
 Cmfem::Memory< CeedOperator >
 Cmfem::Memory< char >
 Cmfem::Memory< const mfem::IntegrationRule *>
 Cmfem::Memory< const mfem::KnotVector *>
 Cmfem::Memory< const mfem::Operator *>
 Cmfem::Memory< const mfem::SparseMatrix *>
 Cmfem::Memory< Dist_Level_Set_Coefficient *>
 Cmfem::Memory< double *>
 Cmfem::Memory< double >
 Cmfem::Memory< FiniteElementSpace *>
 Cmfem::Memory< Geometry::Type >
 Cmfem::Memory< GroupId >
 Cmfem::Memory< HYPRE_BigInt >
 Cmfem::Memory< HYPRE_Int >
 Cmfem::Memory< HYPRE_ParVector >
 Cmfem::Memory< int >
 Cmfem::Memory< IntegrationPoint >
 Cmfem::Memory< mfem::Array< int > *>
 Cmfem::Memory< mfem::Array< mfem::BilinearFormIntegrator * > *>
 Cmfem::Memory< mfem::Array< mfem::LinearFormIntegrator * > *>
 Cmfem::Memory< mfem::BilinearForm *>
 Cmfem::Memory< mfem::BilinearFormIntegrator *>
 Cmfem::Memory< mfem::BlockNonlinearFormIntegrator *>
 Cmfem::Memory< mfem::BlockOperator *>
 Cmfem::Memory< mfem::ceed::AlgebraicInterpolation *>
 Cmfem::Memory< mfem::Coefficient *>
 Cmfem::Memory< mfem::ComplexDenseMatrix *>
 Cmfem::Memory< mfem::Connection >
 Cmfem::Memory< mfem::DeltaLFIntegrator *>
 Cmfem::Memory< mfem::DenseMatrix *>
 Cmfem::Memory< mfem::DofToQuad *>
 Cmfem::Memory< mfem::DofTransformation *>
 Cmfem::Memory< mfem::Element *>
 Cmfem::Memory< mfem::Eliminator *>
 Cmfem::Memory< mfem::Embedding >
 Cmfem::Memory< mfem::FaceGeometricFactors *>
 Cmfem::Memory< mfem::FaceQuadratureInterpolator *>
 Cmfem::Memory< mfem::FiniteElementCollection *>
 Cmfem::Memory< mfem::FiniteElementSpace *>
 Cmfem::Memory< mfem::GeometricFactors *>
 Cmfem::Memory< mfem::GridFunction *>
 Cmfem::Memory< mfem::IntegerSet *>
 Cmfem::Memory< mfem::IntegrationPoint >
 Cmfem::Memory< mfem::IntegrationRule *>
 Cmfem::Memory< mfem::InterpConfig >
 Cmfem::Memory< mfem::KnotVector *>
 Cmfem::Memory< mfem::LinearFormIntegrator *>
 Cmfem::Memory< mfem::Mesh *>
 Cmfem::Memory< mfem::Mesh::FaceInfo >
 Cmfem::Memory< mfem::Mesh::NCFaceInfo >
 Cmfem::Memory< mfem::MeshOperator *>
 Cmfem::Memory< mfem::NCInterpConfig >
 Cmfem::Memory< mfem::NCMesh::Element *>
 Cmfem::Memory< mfem::NCMesh::Face *>
 Cmfem::Memory< mfem::NCMesh::Master >
 Cmfem::Memory< mfem::NCMesh::MeshId >
 Cmfem::Memory< mfem::NCMesh::Node *>
 Cmfem::Memory< mfem::NCMesh::Slave >
 Cmfem::Memory< mfem::NonlinearFormIntegrator *>
 Cmfem::Memory< mfem::NURBSPatch *>
 Cmfem::Memory< mfem::Operator *>
 Cmfem::Memory< mfem::OperatorHandle *>
 Cmfem::Memory< mfem::ParametricBNLFormIntegrator *>
 Cmfem::Memory< mfem::ParFiniteElementSpace *>
 Cmfem::Memory< mfem::ParGridFunction *>
 Cmfem::Memory< mfem::ParMesh::Vert3 >
 Cmfem::Memory< mfem::ParMesh::Vert4 >
 Cmfem::Memory< mfem::QuadratureInterpolator *>
 Cmfem::Memory< mfem::RefinedGeometry *>
 Cmfem::Memory< mfem::Refinement >
 Cmfem::Memory< mfem::Solver *>
 Cmfem::Memory< mfem::SparseMatrix *>
 Cmfem::Memory< mfem::TMOP_Integrator *>
 Cmfem::Memory< mfem::TMOP_QualityMetric *>
 Cmfem::Memory< mfem::TransposeOperator *>
 Cmfem::Memory< mfem::Triple< int, int, int > >
 Cmfem::Memory< mfem::Vector *>
 Cmfem::Memory< mfem::Vertex >
 Cmfem::Memory< Option >
 Cmfem::Memory< p_assembled_t >
 Cmfem::Memory< ParFiniteElementSpace *>
 Cmfem::Memory< socketstream *>
 Cmfem::Memory< T *>
 Cmfem::Memory< unsigned char >
 Cmfem::Memory< unsigned int >
 Cmfem::MemoryIJData
 Cmfem::MemoryManager
 Cmfem::Mesh
 Cmfem::NCMesh::MeshIdIdentifies a vertex/edge/face in both Mesh and NCMesh
 Cmfem::MeshOperatorServes as base for mesh manipulation classes
 Cmfem::MortarAssemblerThis class implements the serial variational transfer between finite element spaces. Variational transfer has been shown to have better approximation properties than standard interpolation. This facilities can be used for supporting applications which require the handling of non matching meshes. For instance: General multi-physics problems, fluid structure interaction, or even visualization of average quantities within subvolumes This algorithm allows to perform quadrature in the intersection of elements of two separate and unrelated meshes. It generates quadrature rules in the intersection which allows us to integrate-with to machine precision using the mfem::MortarIntegrator interface. See https://doi.org/10.1137/15M1008361 for and in-depth explanation. At this time curved elements are not supported
 Cmfem::MortarIntegratorInterface for mortar element assembly. The MortarIntegrator interface is used for performing Petrov-Galerkin finite element assembly on intersections between elements. The quadrature rules are to be generated by a cut algorithm (e.g., mfem::Cut). The quadrature rules are defined in the respective trial and test reference frames. Trial and test spaces can be associated with different element shapes (e.g., triangles and quadrilaterals) and different polynomial orders (e.g., 1 and 4). This class is designed to work in conjunction with the MFEM/moonolith module but it can be used also for other applications
 Cmfem::MpiA simple singleton class that calls MPI_Init() at construction and MPI_Finalize() at destruction. It also provides easy access to MPI_COMM_WORLD's rank and size
 Cmfem::MPI_SessionA simple convenience class based on the Mpi singleton class above. Preserved for backward compatibility. New code should use Mpi::Init() and other Mpi methods instead
 Cmfem::MPITypeMap< Type >Helper struct to convert a C++ type to an MPI type
 Cmfem::MPITypeMap< double >
 Cmfem::MPITypeMap< int >
 Cmfem::MyEnergyFunctor< TDataType, TParamVector, TStateVector, state_size, param_size >
 Cmfem::MyResidualFunctor< TDataType, TParamVector, TStateVector, residual_size, state_size, param_size >
 Cmfem::NamedFieldsMap< T >Lightweight adaptor over an std::map from strings to pointer to T
 Cmfem::NamedFieldsMap< Array< int > >
 Cmfem::NamedFieldsMap< GridFunction >
 Cmfem::NamedFieldsMap< QuadratureFunction >
 Cmfem::navier::NavierSolverTransient incompressible Navier Stokes solver in a split scheme formulation
 Cmfem::Mesh::NCFaceInfo
 Cmfem::NCInterpConfig
 Cmfem::NCMesh::NCListLists all edges/faces in the nonconforming mesh
 Cmfem::NCMeshA class for non-conforming AMR. The class is not used directly by the user, rather it is an extension of the Mesh class
 CNeoHookeanMaterial< dim, gradient_type >Neo-Hookean material
 CGecko::Node
 Cmfem::KDTree< Tindex, Tfloat, ndim, Tnorm >::NodeNDStructure defining a node in the KDTree
 Cmfem::NonlinearFormIntegratorThis class is used to express the local action of a general nonlinear finite element operator. In addition it may provide the capability to assemble the local gradient operator and to compute the local energy
 Cmfem::KDTreeNorms::Norm_l1< Tfloat, ndim >Evaluates l1 norm of a vector
 Cmfem::KDTreeNorms::Norm_l2< Tfloat, ndim >Evaluates l2 norm of a vector
 Cmfem::KDTreeNorms::Norm_l2< double, ndim >
 Cmfem::KDTreeNorms::Norm_li< Tfloat, ndim >Finds the max absolute value of a vector
 Cmfem::NoSIMDTraits< complex_t, real_t >
 Cmfem::NURBSExtension
 Cmfem::NURBSMeshRulesClass for defining different integration rules on each NURBS patch
 Cmfem::NURBSPatch
 Cmfem::NURBSPatchMap
 Cmfem::ODESolverAbstract class for solving systems of ODEs: dx/dt = f(x,t)
 Cmfem::OffsetStridedLayout1D< N1, S1 >
 Cmfem::OffsetStridedLayout2D< N1, S1, N2, S2 >
 Cmfem::OffsetStridedLayout3D< N1, S1, N2, S2, N3, S3 >
 Cmfem::OffsetStridedLayout4D< N1, S1, N2, S2, N3, S3, N4, S4 >
 Cmfem::GroupCommunicator::OpData< T >Data structure on which we define reduce operations. The data is associated with (and the operation is performed on) one group at a time
 Cmfem::OperatorAbstract operator
 Cmfem::OperatorHandlePointer to an Operator of a specified type
 Cmfem::ceed::OperatorInfo
 Cmfem::OptimizationProblem
 Cmfem::OptionsParser
 Cmfem::OrderingThe ordering method used when the number of unknowns per mesh node (vector dimension) is bigger than 1
 Cmfem::TMassKernel< SDim, Dim, complex_t >::p_asm_data< qpts >Partially assembled data type for one element with the given number of quadrature points. This type is used in partial assembly, and partially assembled action
 Cmfem::TDiffusionKernel< 1, 1, complex_t >::p_asm_data< qpts >Partially assembled data type for one element with the given number of quadrature points. This type is used in partial assembly, and partially assembled action
 Cmfem::TDiffusionKernel< 2, 2, complex_t >::p_asm_data< qpts >Partially assembled data type for one element with the given number of quadrature points. This type is used in partial assembly, and partially assembled action. Stores one symmetric 2 x 2 matrix per point
 Cmfem::TDiffusionKernel< 3, 3, complex_t >::p_asm_data< qpts >Partially assembled data type for one element with the given number of quadrature points. This type is used in partial assembly, and partially assembled action. Stores one symmetric 3 x 3 matrix per point
 Cmfem::Pair< A, B >A pair of objects
 Cmfem::ParametricBNLFormIntegrator
 Cmfem::ParMortarAssemblerThis class implements the parallel variational transfer between finite element spaces. Variational transfer has been shown to have better approximation properties than standard interpolation. This facilities can be used for supporting applications which require the handling of non matching meshes. For instance: General multi-physics problems, fluid structure interaction, or even visualization of average quantities within subvolumes. This particular code is also used with LLNL for large scale multilevel Monte Carlo simulations. This algorithm allows to perform quadrature in the intersection of elements of two separate, unrelated, and arbitrarily distributed meshes. It generates quadrature rules in the intersection which allows us to integrate with to machine precision using the mfem::MortarIntegrator interface. See https://doi.org/10.1137/15M1008361 for and in-depth explanation. At this time curved elements are not supported. Convex non-affine elements are partially supported, however, high order (>3) finite element discretizations or nonlinear geometric transformations might generate undesired oscillations. Discontinuous fields in general can only be mapped to order 0 destination fields. For such cases localized versions of the projection will have to be developed
 Cmfem::ParSesquilinearForm
 Cmfem::ParTransferMapParTransferMap represents a mapping of degrees of freedom from a source ParGridFunction to a destination ParGridFunction
 Cmfem::common::PDEFilter
 Cmfem::PetscBCHandlerHelper class for handling essential boundary conditions
 Cmfem::PetscBDDCSolverParamsAuxiliary class for BDDC customization
 Cmfem::PetscPreconditionerFactory
 Cmfem::PetscSolverAbstract class for PETSc's solvers
 Cmfem::PetscSolverMonitorAbstract class for monitoring PETSc's solvers
 Cmfem::NCMesh::Point
 Cmfem::NCMesh::PointMatrixThe PointMatrix stores the coordinates of the slave face using the master face coordinate as reference
 Cmfem::KDTree< Tindex, Tfloat, ndim, Tnorm >::PointND
 Cmfem::Poly_1DClass for computing 1D special polynomials and their associated basis functions
 Cmfem::PowerMethodPowerMethod helper class to estimate the largest eigenvalue of an operator using the iterative power method
 Cmfem::navier::PresDirichletBC_TContainer for a Dirichlet boundary condition of the pressure field
 Cmfem::IterativeSolver::PrintLevelSettings for the output behavior of the IterativeSolver
 CGecko::Progress
 Cmfem::QFunctionAutoDiff< TFunctor, state_size, param_size >
 Cmfem::Quadrature1DA class container for 1D quadrature type constants
 Cmfem::QuadratureFunctions1DA Class that defines 1-D numerical quadrature rules on [0,1]
 Cmfem::QuadratureInterpolatorA class that performs interpolation from an E-vector to quadrature point values and/or derivatives (Q-vectors)
 Cmfem::QuadratureSpaceBaseAbstract base class for QuadratureSpace and FaceQuadratureSpace
 Cmfem::QVectorFuncAutoDiff< TFunctor, vector_size, state_size, param_size >
 Cmfem::RajaCuWrap< Dim >
 Cmfem::RajaCuWrap< 1 >
 Cmfem::RajaCuWrap< 2 >
 Cmfem::RajaCuWrap< 3 >
 Cmfem::RajaHipWrap< Dim >
 Cmfem::RajaHipWrap< 1 >
 Cmfem::RajaHipWrap< 2 >
 Cmfem::RajaHipWrap< 3 >
 Cmfem::RefinedGeometry
 Cmfem::Refinement
 Cmfem::ceed::RestrHash
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >::Result< EvalOps, impl_traits_t >Templated struct Result, used to specify the type result that is computed by the TElementTransformation::Eval() method and stored in this structure
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 0, it_t >
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 1, it_t >
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 10, it_t >
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 2, it_t >
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 3, it_t >
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 6, it_t >
 Cmfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >::Aux< true, dummy >::result_t
 CRiemannSolver
 Cmfem::DSTable::RowIterator
 Cmfem::TBilinearForm< meshType, solFESpace, IR, IntegratorType, solVecLayout_t, complex_t, real_t, impl_traits_t >::S_specContains matrix sizes, type of kernel (ElementMatrix is templated on a kernel, e.g. ElementMatrix::Compute may be AssembleGradGrad())
 Cmfem::ScalarLayout
 Cmfem::ScalarOps< scalar_t >Auxiliary class used as the default for the second template parameter in the classes InvariantsEvaluator2D and InvariantsEvaluator3D
 Cmfem::SecondOrderODESolverAbstract class for solving systems of ODEs: d2x/dt2 = f(x,dx/dt,t)
 Cmfem::SesquilinearForm
 Cmfem::ShapeEvaluator_base< FE, IR, TP, real_t >Shape evaluators – values of basis functions on the reference element
 Cmfem::ShapeEvaluator_base< FE, IR, false, real_t >ShapeEvaluator without tensor-product structure
 Cmfem::ShapeEvaluator_base< FE, IR, FE::tensor_prod &&IR::tensor_prod, real_t >
 Cmfem::ShapeEvaluator_base< FE_type, IR, FE_type ::tensor_prod &&IR::tensor_prod, real_t >
 Cmfem::ShapeEvaluator_base< meshFE_type, IR, meshFE_type ::tensor_prod &&IR::tensor_prod, real_t >
 Cmfem::ShapeEvaluator_base< solFE_type, IR, solFE_type ::tensor_prod &&IR::tensor_prod, real_t >
 Cmfem::ShiftedFaceMarker
 Cmfem::SIASolver
 Cmfem::SlepcEigenSolver
 Cmfem::socketserver
 Cmfem::spde::SPDESolver
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Spec< kernel_t, impl_traits_t >
 Cmfem::STable3DSymmetric 3D Table stored as an array of rows each of which has a stack of column, floor, number nodes. The number of the node is assigned by counting the nodes from zero as they are pushed into the table. Diagonals of any kind are not allowed so the row, column and floor must all be different for each node. Only one node is stored for all 6 symmetric entries that are indexable by unique triplets of row, column, and floor
 Cmfem::STable3DNode
 Cmfem::Stack< Elem, Num >
 Cmfem::Stack< Elem *, Num >
 Cmfem::Stack< mfem::STable3DNode *, Num >
 Cmfem::Stack< mfem::Tetrahedron *, Num >
 Cmfem::Stack< Node *, Num >
 Cmfem::StackPart< Elem, Num >
 Cmfem::StackPart< Elem *, Num >
 Cmfem::StackPart< mfem::STable3DNode *, Num >
 Cmfem::StackPart< mfem::Tetrahedron *, Num >
 Cmfem::StackPart< Node *, Num >
 Cmfem::StatelessDofTransformation
 Cstrict_fstream::detail::static_method_holder
 Cmfem::StaticCondensation
 Cmfem::StopWatchTiming object
 Cstreambuf
 Czstr::detail::strict_fstream_holder< FStream_Type >
 Czstr::detail::strict_fstream_holder< strict_fstream::ifstream >
 Czstr::detail::strict_fstream_holder< strict_fstream::ofstream >
 Cmfem::StridedLayout1D< N1, S1 >
 Cmfem::StridedLayout2D< N1, S1, N2, S2 >
 Cmfem::StridedLayout2D< N1, 1, N2, N1 >
 Cmfem::StridedLayout3D< N1, S1, N2, S2, N3, S3 >
 Cmfem::StridedLayout3D< N1, 1, N2, N1, N3, N1 *N2 >
 Cmfem::StridedLayout4D< N1, S1, N2, S2, N3, S3, N4, S4 >
 Cmfem::StridedLayout4D< N1, 1, N2, N1, N3, N1 *N2, N4, N1 *N2 *N3 >
 Cmfem::SundialsSingleton class for SUNContext and SundialsMemHelper objects
 Cmfem::SundialsMemHelper
 Cmfem::SundialsSolverBase class for interfacing with SUNDIALS packages
 Cmfem::electromagnetics::SurfaceCurrent
 Cmfem::TBilinearForm< meshType, solFESpace, IR, IntegratorType, solVecLayout_t, complex_t, real_t, impl_traits_t >::T_result
 Cmfem::Table
 Cmfem::TargetConstructorBase class representing target-matrix construction algorithms for mesh optimization via the target-matrix optimization paradigm (TMOP)
 Cmfem::TAutoDiffDenseMatrix< dtype >Templated dense matrix data type
 Cmfem::TAutoDiffVector< dtype >Templated vector data type
 Cmfem::TCoefficientTemplated coefficient classes, cf. coefficient.?pp
 Cmfem::TDiffusionKernel< SDim, Dim, complex_t >Diffusion kernel
 Cmfem::TDiffusionKernel< 1, 1, complex_t >Diffusion kernel in 1D
 Cmfem::TDiffusionKernel< 2, 2, complex_t >Diffusion kernel in 2D
 Cmfem::TDiffusionKernel< 3, 3, complex_t >Diffusion kernel in 3D
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::TElementMatrix< InOps, OutOps, it_t >This struct implements element matrix computation for some combinations of input (InOps) and output (OutOps) operations
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::TElementMatrix< 1, 1, it_t >
 Cmfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::TElementMatrix< 2, 2, it_t >
 Cmfem::TElementTransformation< Mesh_t, IR, real_t >Element transformation class, templated on a mesh type and an integration rule. It is constructed from a mesh (e.g. class TMesh) and shape evaluator (e.g. class ShapeEvaluator) objects. Allows computation of physical coordinates and Jacobian matrices corresponding to the reference integration points. The desired result is specified through the template subclass Result and stored in an object of the same type
 Cmfem::TensorBasisElement
 Cmfem::TensorInd< N, Dim, T, Args >A Class to compute the real index from the multi-indices of a tensor
 Cmfem::TensorInd< Dim, Dim, T, Args... >
 Cmfem::electromagnetics::TeslaSolver
 Cmfem::TFiniteElementSpace_simple< FE, IndexType >
 Cmfem::TFiniteElementSpace_simple< FE, DGIndexer< FE > >
 Cmfem::TFiniteElementSpace_simple< FE, ElementDofIndexer< FE > >
 Cmfem::TIntegrationRule< G, Order, real_t >
 Cmfem::TIntegrator< coeff_t, kernel_t >The Integrator class combines a kernel and a coefficient
 Cmfem::TMassKernel< SDim, Dim, complex_t >Mass kernel
 Cmfem::TMesh< FESpace, nodeLayout >
 Cmfem::TMOP_LimiterFunctionBase class for limiting functions to be used in class TMOP_Integrator
 Cmfem::TMOPHRSolver
 Cmfem::NCMesh::TmpVertex
 Cmfem::TProductIntegrationRule_base< Dim, Q, real_t >
 Cmfem::TProductIntegrationRule_base< 1, Q, real_t >
 Cmfem::TProductIntegrationRule_base< 2, Q, real_t >
 Cmfem::TProductIntegrationRule_base< 3, Q, real_t >
 Cmfem::TProductShapeEvaluator< Dim, DOF, NIP, real_t >
 Cmfem::TProductShapeEvaluator< 1, DOF, NIP, real_t >ShapeEvaluator with 1D tensor-product structure
 Cmfem::TProductShapeEvaluator< 2, DOF, NIP, real_t >ShapeEvaluator with 2D tensor-product structure
 Cmfem::TProductShapeEvaluator< 3, DOF, NIP, real_t >ShapeEvaluator with 3D tensor-product structure
 Cmfem::TProductShapeEvaluator< FE::dim, FE::dofs_1d, IR::qpts_1d, real_t >
 Cmfem::TransferMapTransferMap represents a mapping of degrees of freedom from a source GridFunction to a destination GridFunction
 Cmfem::Triple< A, B, C >A triple of objects
 Cmfem::Triple< int, int, int >
 Cmfem::TVector< S, data_t, align >
 Cmfem::TVector< N1 *N2 *N3 *N4, data_t, align >
 Cmfem::TVector< N1 *N2 *N3 *N4, vcomplex_t, false >
 Cmfem::TVector< N1 *N2 *N3 *N4, vreal_t, align >
 Cmfem::TVector< N1 *N2 *N3, data_t, align >
 Cmfem::TVector< N1 *N2 *N3, real_t, align >
 Cmfem::TVector< N1 *N2 *N3, real_t, false >
 Cmfem::TVector< N1 *N2 *N3, vcomplex_t, align >
 Cmfem::TVector< N1 *N2 *N3, vcomplex_t, false >
 Cmfem::TVector< N1 *N2 *N3, vreal_t, align >
 Cmfem::TVector< N1 *N2 *N3, vreal_t, false >
 Cmfem::TVector< N1 *N2, complex_type, false >
 Cmfem::TVector< N1 *N2, data_t, align >
 Cmfem::TVector< N1 *N2, real_t, align >
 Cmfem::TVector< N1 *N2, typename IR::real_type, false >
 Cmfem::TVector< Q, real_t >
 Cmfem::TVector< qpts, real_t >
 Cmfem::SubMeshUtils::UniqueIndexGeneratorConvenience object to create unique indices
 Cmfem::VarMessage< Tag >Variable-length MPI message containing unspecific binary data
 Cmfem::VarMessage< 158 >
 Cmfem::VarMessage< 314 >
 Cmfem::VectorVector data type
 Cmfem::VectorCoefficientBase class for vector Coefficients that optionally depend on time and space
 Cmfem::VectorFuncAutoDiff< vector_size, state_size, param_size >
 Cmfem::VectorLayout< Ord, NumComp >
 Cmfem::navier::VelDirichletBC_TContainer for a Dirichlet boundary condition of the velocity field
 Cmfem::ParMesh::Vert3
 Cmfem::ParMesh::Vert4
 Cmfem::VertexData type for vertex
 Cmfem::Geometry::Constants< Geometry::PRISM >::VertToVert
 Cmfem::Geometry::Constants< Geometry::SQUARE >::VertToVert
 Cmfem::Geometry::Constants< Geometry::CUBE >::VertToVert
 Cmfem::Geometry::Constants< Geometry::TETRAHEDRON >::VertToVert
 Cmfem::Geometry::Constants< Geometry::PYRAMID >::VertToVert
 Cmfem::Geometry::Constants< Geometry::TRIANGLE >::VertToVert
 Cmfem::VisItFieldInfoHelper class for VisIt visualization data
 Cmfem::spde::Visualizer
 Cmfem::electromagnetics::VoltaSolver
 Cmfem::VTKGeometryHelper class for converting between MFEM and VTK geometry types
 CGecko::WeightedValue
 Cz_stream