MFEM
v4.2.0
Finite element discretization library
|
Abstract class for all finite elements. More...
#include <fe.hpp>
Public Types | |
enum | RangeType { SCALAR, VECTOR } |
Enumeration for range_type and deriv_range_type. More... | |
enum | MapType { VALUE, INTEGRAL, H_DIV, H_CURL } |
Enumeration for MapType: defines how reference functions are mapped to physical space. More... | |
enum | DerivType { NONE, GRAD, DIV, CURL } |
Enumeration for DerivType: defines which derivative method is implemented. More... | |
Public Member Functions | |
FiniteElement (int D, Geometry::Type G, int Do, int O, int F=FunctionSpace::Pk) | |
Construct FiniteElement with given. More... | |
int | GetDim () const |
Returns the reference space dimension for the finite element. More... | |
Geometry::Type | GetGeomType () const |
Returns the Geometry::Type of the reference element. More... | |
int | GetDof () const |
Returns the number of degrees of freedom in the finite element. More... | |
int | GetOrder () const |
Returns the order of the finite element. In the case of anisotropic orders, returns the maximum order. More... | |
bool | HasAnisotropicOrders () const |
Returns true if the FiniteElement basis may be using different orders/degrees in different spatial directions. More... | |
const int * | GetAnisotropicOrders () const |
Returns an array containing the anisotropic orders/degrees. More... | |
int | Space () const |
Returns the type of FunctionSpace on the element. More... | |
int | GetRangeType () const |
Returns the FiniteElement::RangeType of the element, one of {SCALAR, VECTOR}. More... | |
int | GetDerivRangeType () const |
Returns the FiniteElement::RangeType of the element derivative, either SCALAR or VECTOR. More... | |
int | GetMapType () const |
Returns the FiniteElement::MapType of the element describing how reference functions are mapped to physical space, one of {VALUE, INTEGRAL H_DIV, H_CURL}. More... | |
int | GetDerivType () const |
Returns the FiniteElement::DerivType of the element describing the spatial derivative method implemented, one of {NONE, GRAD, DIV, CURL}. More... | |
int | GetDerivMapType () const |
Returns the FiniteElement::DerivType of the element describing how reference function derivatives are mapped to physical space, one of {VALUE, INTEGRAL, H_DIV, H_CURL}. More... | |
virtual void | CalcShape (const IntegrationPoint &ip, Vector &shape) const =0 |
Evaluate the values of all shape functions of a scalar finite element in reference space at the given point ip. More... | |
void | CalcPhysShape (ElementTransformation &Trans, Vector &shape) const |
Evaluate the values of all shape functions of a scalar finite element in physical space at the point described by Trans. More... | |
virtual void | CalcDShape (const IntegrationPoint &ip, DenseMatrix &dshape) const =0 |
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the given point ip. More... | |
void | CalcPhysDShape (ElementTransformation &Trans, DenseMatrix &dshape) const |
Evaluate the gradients of all shape functions of a scalar finite element in physical space at the point described by Trans. More... | |
const IntegrationRule & | GetNodes () const |
Get a const reference to the nodes of the element. More... | |
virtual void | CalcVShape (const IntegrationPoint &ip, DenseMatrix &shape) const |
Evaluate the values of all shape functions of a vector finite element in reference space at the given point ip. More... | |
virtual void | CalcVShape (ElementTransformation &Trans, DenseMatrix &shape) const |
Evaluate the values of all shape functions of a vector finite element in physical space at the point described by Trans. More... | |
void | CalcPhysVShape (ElementTransformation &Trans, DenseMatrix &shape) const |
Equivalent to the CalcVShape() method with the same arguments. More... | |
virtual void | CalcDivShape (const IntegrationPoint &ip, Vector &divshape) const |
Evaluate the divergence of all shape functions of a vector finite element in reference space at the given point ip. More... | |
void | CalcPhysDivShape (ElementTransformation &Trans, Vector &divshape) const |
Evaluate the divergence of all shape functions of a vector finite element in physical space at the point described by Trans. More... | |
virtual void | CalcCurlShape (const IntegrationPoint &ip, DenseMatrix &curl_shape) const |
Evaluate the curl of all shape functions of a vector finite element in reference space at the given point ip. More... | |
void | CalcPhysCurlShape (ElementTransformation &Trans, DenseMatrix &curl_shape) const |
Evaluate the curl of all shape functions of a vector finite element in physical space at the point described by Trans. More... | |
virtual void | GetFaceDofs (int face, int **dofs, int *ndofs) const |
Get the dofs associated with the given face. *dofs is set to an internal array of the local dofc on the face, while *ndofs is set to the number of dofs on that face. More... | |
virtual void | CalcHessian (const IntegrationPoint &ip, DenseMatrix &Hessian) const |
Evaluate the Hessians of all shape functions of a scalar finite element in reference space at the given point ip. More... | |
virtual void | CalcPhysHessian (ElementTransformation &Trans, DenseMatrix &Hessian) const |
Evaluate the Hessian of all shape functions of a scalar finite element in reference space at the given point ip. More... | |
virtual void | CalcPhysLaplacian (ElementTransformation &Trans, Vector &Laplacian) const |
Evaluate the Laplacian of all shape functions of a scalar finite element in reference space at the given point ip. More... | |
virtual void | CalcPhysLinLaplacian (ElementTransformation &Trans, Vector &Laplacian) const |
virtual void | GetLocalInterpolation (ElementTransformation &Trans, DenseMatrix &I) const |
Return the local interpolation matrix I (Dof x Dof) where the fine element is the image of the base geometry under the given transformation. More... | |
virtual void | GetLocalRestriction (ElementTransformation &Trans, DenseMatrix &R) const |
Return a local restriction matrix R (Dof x Dof) mapping fine dofs to coarse dofs. More... | |
virtual void | GetTransferMatrix (const FiniteElement &fe, ElementTransformation &Trans, DenseMatrix &I) const |
Return interpolation matrix, I, which maps dofs from a coarse element, fe, to the fine dofs on this finite element. More... | |
virtual void | Project (Coefficient &coeff, ElementTransformation &Trans, Vector &dofs) const |
Given a coefficient and a transformation, compute its projection (approximation) in the local finite dimensional space in terms of the degrees of freedom. More... | |
virtual void | Project (VectorCoefficient &vc, ElementTransformation &Trans, Vector &dofs) const |
Given a vector coefficient and a transformation, compute its projection (approximation) in the local finite dimensional space in terms of the degrees of freedom. (VectorFiniteElements) More... | |
virtual void | ProjectFromNodes (Vector &vc, ElementTransformation &Trans, Vector &dofs) const |
Given a vector of values at the finite element nodes and a transformation, compute its projection (approximation) in the local finite dimensional space in terms of the degrees of freedom. Valid for VectorFiniteElements. More... | |
virtual void | ProjectMatrixCoefficient (MatrixCoefficient &mc, ElementTransformation &T, Vector &dofs) const |
Given a matrix coefficient and a transformation, compute an approximation ("projection") in the local finite dimensional space in terms of the degrees of freedom. For VectorFiniteElements, the rows of the coefficient are projected in the vector space. More... | |
virtual void | ProjectDelta (int vertex, Vector &dofs) const |
Project a delta function centered on the given vertex in the local finite dimensional space represented by the dofs. More... | |
virtual void | Project (const FiniteElement &fe, ElementTransformation &Trans, DenseMatrix &I) const |
Compute the embedding/projection matrix from the given FiniteElement onto 'this' FiniteElement. The ElementTransformation is included to support cases when the projection depends on it. More... | |
virtual void | ProjectGrad (const FiniteElement &fe, ElementTransformation &Trans, DenseMatrix &grad) const |
Compute the discrete gradient matrix from the given FiniteElement onto 'this' FiniteElement. The ElementTransformation is included to support cases when the matrix depends on it. More... | |
virtual void | ProjectCurl (const FiniteElement &fe, ElementTransformation &Trans, DenseMatrix &curl) const |
Compute the discrete curl matrix from the given FiniteElement onto 'this' FiniteElement. The ElementTransformation is included to support cases when the matrix depends on it. More... | |
virtual void | ProjectDiv (const FiniteElement &fe, ElementTransformation &Trans, DenseMatrix &div) const |
Compute the discrete divergence matrix from the given FiniteElement onto 'this' FiniteElement. The ElementTransformation is included to support cases when the matrix depends on it. More... | |
virtual const DofToQuad & | GetDofToQuad (const IntegrationRule &ir, DofToQuad::Mode mode) const |
Return a DofToQuad structure corresponding to the given IntegrationRule using the given DofToQuad::Mode. More... | |
virtual | ~FiniteElement () |
Deconstruct the FiniteElement. More... | |
Static Public Member Functions | |
static bool | IsClosedType (int b_type) |
Return true if the BasisType of b_type is closed (has Quadrature1D points on the boundary). More... | |
static bool | IsOpenType (int b_type) |
Return true if the BasisType of b_type is open (doesn't have Quadrature1D points on the boundary). More... | |
static int | VerifyClosed (int b_type) |
Ensure that the BasisType of b_type is closed (has Quadrature1D points on the boundary). More... | |
static int | VerifyOpen (int b_type) |
Ensure that the BasisType of b_type is open (doesn't have Quadrature1D points on the boundary). More... | |
static int | VerifyNodal (int b_type) |
Ensure that the BasisType of b_type nodal (satisfies the interpolation property). More... | |
Protected Attributes | |
int | dim |
Dimension of reference space. More... | |
Geometry::Type | geom_type |
Geometry::Type of the reference element. More... | |
int | func_space |
int | range_type |
int | map_type |
int | deriv_type |
int | deriv_range_type |
int | deriv_map_type |
int | dof |
Number of degrees of freedom. More... | |
int | order |
Order/degree of the shape functions. More... | |
int | orders [Geometry::MaxDim] |
Anisotropic orders. More... | |
IntegrationRule | Nodes |
DenseMatrix | vshape |
Array< DofToQuad * > | dof2quad_array |
Container for all DofToQuad objects created by the FiniteElement. More... | |
Enumeration for DerivType: defines which derivative method is implemented.
Each FiniteElement class implements up to one type of derivative. The value returned by GetDerivType() indicates which derivative method is implemented.
Enumerator | |
---|---|
NONE |
No derivatives implemented. |
GRAD |
Implements CalcDShape methods. |
DIV |
Implements CalcDivShape methods. |
CURL |
Implements CalcCurlShape methods. |
Enumeration for MapType: defines how reference functions are mapped to physical space.
A reference function \( \hat u(\hat x) \) can be mapped to a function \( u(x) \) on a general physical element in following ways:
mfem::FiniteElement::FiniteElement | ( | int | D, |
Geometry::Type | G, | ||
int | Do, | ||
int | O, | ||
int | F = FunctionSpace::Pk |
||
) |
Construct FiniteElement with given.
D | Reference space dimension |
G | Geometry type (of type Geometry::Type) |
Do | Number of degrees of freedom in the FiniteElement |
O | Order/degree of the FiniteElement |
F | FunctionSpace type of the FiniteElement |
|
virtual |
Deconstruct the FiniteElement.
|
virtual |
Evaluate the curl of all shape functions of a vector finite element in reference space at the given point ip.
Each row of the result DenseMatrix curl_shape contains the components of the curl of one vector shape function. The size (dof x CDim) of curl_shape must be set in advance, where CDim = 3 for dim = 3 and CDim = 1 for dim = 2.
Reimplemented in mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::Nedelec1TetFiniteElement, and mfem::Nedelec1HexFiniteElement.
|
virtual |
Evaluate the divergence of all shape functions of a vector finite element in reference space at the given point ip.
The size (dof) of the result Vector divshape must be set in advance.
Reimplemented in mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, mfem::RT0TetFiniteElement, mfem::RT1HexFiniteElement, mfem::RT0HexFiniteElement, mfem::RT2QuadFiniteElement, mfem::RT2TriangleFiniteElement, mfem::RT1QuadFiniteElement, mfem::RT1TriangleFiniteElement, mfem::RT0QuadFiniteElement, and mfem::RT0TriangleFiniteElement.
|
pure virtual |
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the given point ip.
Each row of the result DenseMatrix dshape contains the derivatives of one shape function. The size (dof x dim) of dshape must be set in advance.
Implemented in mfem::NURBS3DFiniteElement, mfem::NURBS2DFiniteElement, mfem::NURBS1DFiniteElement, mfem::L2Pos_WedgeElement, mfem::L2_WedgeElement, mfem::L2Pos_TetrahedronElement, mfem::L2_TetrahedronElement, mfem::L2Pos_TriangleElement, mfem::L2_TriangleElement, mfem::L2Pos_HexahedronElement, mfem::L2_HexahedronElement, mfem::L2Pos_QuadrilateralElement, mfem::L2_QuadrilateralElement, mfem::L2Pos_SegmentElement, mfem::L2_SegmentElement, mfem::H1Pos_WedgeElement, mfem::H1_WedgeElement, mfem::H1Pos_TetrahedronElement, mfem::H1Pos_TriangleElement, mfem::H1_TetrahedronElement, mfem::H1_TriangleElement, mfem::H1Pos_HexahedronElement, mfem::H1Ser_QuadrilateralElement, mfem::H1Pos_QuadrilateralElement, mfem::H1Pos_SegmentElement, mfem::H1_HexahedronElement, mfem::H1_QuadrilateralElement, mfem::H1_SegmentElement, mfem::RotTriLinearHexFiniteElement, mfem::RefinedTriLinear3DFiniteElement, mfem::RefinedBiLinear2DFiniteElement, mfem::RefinedLinear3DFiniteElement, mfem::RefinedLinear2DFiniteElement, mfem::RefinedLinear1DFiniteElement, mfem::LagrangeHexFiniteElement, mfem::P0HexFiniteElement, mfem::P0TetFiniteElement, mfem::P1TetNonConfFiniteElement, mfem::Lagrange1DFiniteElement, mfem::P2SegmentFiniteElement, mfem::P1SegmentFiniteElement, mfem::P0SegmentFiniteElement, mfem::CrouzeixRaviartQuadFiniteElement, mfem::CrouzeixRaviartFiniteElement, mfem::TriLinear3DFiniteElement, mfem::Quadratic3DFiniteElement, mfem::Linear3DFiniteElement, mfem::P0QuadFiniteElement, mfem::P0TriangleFiniteElement, mfem::Cubic3DFiniteElement, mfem::Cubic2DFiniteElement, mfem::Cubic1DFiniteElement, mfem::BiCubic2DFiniteElement, mfem::GaussBiQuad2DFiniteElement, mfem::BiQuadPos2DFiniteElement, mfem::BiQuad2DFiniteElement, mfem::GaussQuad2DFiniteElement, mfem::Quad2DFiniteElement, mfem::QuadPos1DFiniteElement, mfem::Quad1DFiniteElement, mfem::P1OnQuadFiniteElement, mfem::GaussBiLinear2DFiniteElement, mfem::GaussLinear2DFiniteElement, mfem::BiLinear2DFiniteElement, mfem::Linear2DFiniteElement, mfem::Linear1DFiniteElement, and mfem::PointFiniteElement.
|
virtual |
Evaluate the Hessians of all shape functions of a scalar finite element in reference space at the given point ip.
Each row of the result DenseMatrix Hessian contains upper triangular part of the Hessian of one shape function. The order in 2D is {u_xx, u_xy, u_yy}. The size (dof x (dim (dim+1)/2) of Hessian must be set in advance.
Reimplemented in mfem::NURBS3DFiniteElement, mfem::NURBS2DFiniteElement, mfem::NURBS1DFiniteElement, mfem::H1_TetrahedronElement, mfem::H1_TriangleElement, mfem::H1_HexahedronElement, mfem::H1_QuadrilateralElement, mfem::H1_SegmentElement, mfem::Cubic2DFiniteElement, mfem::BiCubic2DFiniteElement, mfem::Quad2DFiniteElement, and mfem::BiLinear2DFiniteElement.
void mfem::FiniteElement::CalcPhysCurlShape | ( | ElementTransformation & | Trans, |
DenseMatrix & | curl_shape | ||
) | const |
Evaluate the curl of all shape functions of a vector finite element in physical space at the point described by Trans.
Each row of the result DenseMatrix curl_shape contains the components of the curl of one vector shape function. The size (dof x CDim) of curl_shape must be set in advance, where CDim = 3 for dim = 3 and CDim = 1 for dim = 2.
void mfem::FiniteElement::CalcPhysDivShape | ( | ElementTransformation & | Trans, |
Vector & | divshape | ||
) | const |
void mfem::FiniteElement::CalcPhysDShape | ( | ElementTransformation & | Trans, |
DenseMatrix & | dshape | ||
) | const |
Evaluate the gradients of all shape functions of a scalar finite element in physical space at the point described by Trans.
Each row of the result DenseMatrix dshape contains the derivatives of one shape function. The size (dof x SDim) of dshape must be set in advance, where SDim >= dim is the physical space dimension as described by Trans.
|
virtual |
|
virtual |
|
virtual |
void mfem::FiniteElement::CalcPhysShape | ( | ElementTransformation & | Trans, |
Vector & | shape | ||
) | const |
|
inline |
Equivalent to the CalcVShape() method with the same arguments.
|
pure virtual |
Evaluate the values of all shape functions of a scalar finite element in reference space at the given point ip.
The size (dof) of the result Vector shape must be set in advance.
Implemented in mfem::NURBS3DFiniteElement, mfem::NURBS2DFiniteElement, mfem::NURBS1DFiniteElement, mfem::ND_SegmentElement, mfem::L2Pos_WedgeElement, mfem::L2_WedgeElement, mfem::L2Pos_TetrahedronElement, mfem::L2_TetrahedronElement, mfem::L2Pos_TriangleElement, mfem::L2_TriangleElement, mfem::L2Pos_HexahedronElement, mfem::L2_HexahedronElement, mfem::L2Pos_QuadrilateralElement, mfem::L2_QuadrilateralElement, mfem::L2Pos_SegmentElement, mfem::L2_SegmentElement, mfem::H1Pos_WedgeElement, mfem::H1_WedgeElement, mfem::H1Pos_TetrahedronElement, mfem::H1Pos_TriangleElement, mfem::H1_TetrahedronElement, mfem::H1_TriangleElement, mfem::H1Pos_HexahedronElement, mfem::H1Ser_QuadrilateralElement, mfem::H1Pos_QuadrilateralElement, mfem::H1Pos_SegmentElement, mfem::H1_HexahedronElement, mfem::H1_QuadrilateralElement, mfem::H1_SegmentElement, mfem::RotTriLinearHexFiniteElement, mfem::RefinedTriLinear3DFiniteElement, mfem::RefinedBiLinear2DFiniteElement, mfem::RefinedLinear3DFiniteElement, mfem::RefinedLinear2DFiniteElement, mfem::RefinedLinear1DFiniteElement, mfem::LagrangeHexFiniteElement, mfem::P0HexFiniteElement, mfem::P0TetFiniteElement, mfem::P1TetNonConfFiniteElement, mfem::Lagrange1DFiniteElement, mfem::P2SegmentFiniteElement, mfem::P1SegmentFiniteElement, mfem::P0SegmentFiniteElement, mfem::CrouzeixRaviartQuadFiniteElement, mfem::CrouzeixRaviartFiniteElement, mfem::TriLinear3DFiniteElement, mfem::Quadratic3DFiniteElement, mfem::Linear3DFiniteElement, mfem::P0QuadFiniteElement, mfem::P0TriangleFiniteElement, mfem::Cubic3DFiniteElement, mfem::Cubic2DFiniteElement, mfem::Cubic1DFiniteElement, mfem::BiCubic2DFiniteElement, mfem::GaussBiQuad2DFiniteElement, mfem::BiQuadPos2DFiniteElement, mfem::BiQuad2DFiniteElement, mfem::GaussQuad2DFiniteElement, mfem::Quad2DFiniteElement, mfem::QuadPos1DFiniteElement, mfem::Quad1DFiniteElement, mfem::P1OnQuadFiniteElement, mfem::GaussBiLinear2DFiniteElement, mfem::GaussLinear2DFiniteElement, mfem::BiLinear2DFiniteElement, mfem::Linear2DFiniteElement, mfem::Linear1DFiniteElement, and mfem::PointFiniteElement.
|
virtual |
Evaluate the values of all shape functions of a vector finite element in reference space at the given point ip.
Each row of the result DenseMatrix shape contains the components of one vector shape function. The size (dof x dim) of shape must be set in advance.
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, mfem::RT0TetFiniteElement, mfem::RT1HexFiniteElement, mfem::RT0HexFiniteElement, mfem::Nedelec1TetFiniteElement, mfem::Nedelec1HexFiniteElement, mfem::RT2QuadFiniteElement, mfem::RT2TriangleFiniteElement, mfem::RT1QuadFiniteElement, mfem::RT1TriangleFiniteElement, mfem::RT0QuadFiniteElement, and mfem::RT0TriangleFiniteElement.
|
virtual |
Evaluate the values of all shape functions of a vector finite element in physical space at the point described by Trans.
Each row of the result DenseMatrix shape contains the components of one vector shape function. The size (dof x SDim) of shape must be set in advance, where SDim >= dim is the physical space dimension as described by Trans.
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, mfem::RT0TetFiniteElement, mfem::RT1HexFiniteElement, mfem::RT0HexFiniteElement, mfem::Nedelec1TetFiniteElement, mfem::Nedelec1HexFiniteElement, mfem::RT2QuadFiniteElement, mfem::RT2TriangleFiniteElement, mfem::RT1QuadFiniteElement, mfem::RT1TriangleFiniteElement, mfem::RT0QuadFiniteElement, and mfem::RT0TriangleFiniteElement.
|
inline |
|
inline |
Returns the FiniteElement::DerivType of the element describing how reference function derivatives are mapped to physical space, one of {VALUE, INTEGRAL, H_DIV, H_CURL}.
|
inline |
Returns the FiniteElement::RangeType of the element derivative, either SCALAR or VECTOR.
|
inline |
Returns the FiniteElement::DerivType of the element describing the spatial derivative method implemented, one of {NONE, GRAD, DIV, CURL}.
|
inline |
|
inline |
|
virtual |
Return a DofToQuad structure corresponding to the given IntegrationRule using the given DofToQuad::Mode.
See the documentation for DofToQuad for more details.
Reimplemented in mfem::VectorTensorFiniteElement, mfem::PositiveTensorFiniteElement, mfem::NodalTensorFiniteElement, and mfem::ScalarFiniteElement.
|
virtual |
Get the dofs associated with the given face. *dofs is set to an internal array of the local dofc on the face, while *ndofs is set to the number of dofs on that face.
Reimplemented in mfem::Linear3DFiniteElement.
|
inline |
Returns the Geometry::Type of the reference element.
|
virtual |
Return the local interpolation matrix I (Dof x Dof) where the fine element is the image of the base geometry under the given transformation.
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, mfem::H1Ser_QuadrilateralElement, mfem::RT0TetFiniteElement, mfem::RT1HexFiniteElement, mfem::RT0HexFiniteElement, mfem::Nedelec1TetFiniteElement, mfem::Nedelec1HexFiniteElement, mfem::RT2QuadFiniteElement, mfem::RT1QuadFiniteElement, mfem::RT1TriangleFiniteElement, mfem::RT0QuadFiniteElement, mfem::RT0TriangleFiniteElement, mfem::BiQuadPos2DFiniteElement, mfem::PositiveFiniteElement, and mfem::NodalFiniteElement.
|
virtual |
Return a local restriction matrix R (Dof x Dof) mapping fine dofs to coarse dofs.
The fine element is the image of the base geometry under the given transformation, Trans.
The assumption in this method is that a subset of the coarse dofs can be expressed only in terms of the dofs of the given fine element.
Rows in R corresponding to coarse dofs that cannot be expressed in terms of the fine dofs will be marked as invalid by setting the first entry (column 0) in the row to infinity().
This method assumes that the dimensions of R are set before it is called.
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, and mfem::NodalFiniteElement.
|
inline |
Returns the FiniteElement::MapType of the element describing how reference functions are mapped to physical space, one of {VALUE, INTEGRAL H_DIV, H_CURL}.
|
inline |
|
inline |
|
inline |
Returns the FiniteElement::RangeType of the element, one of {SCALAR, VECTOR}.
|
virtual |
Return interpolation matrix, I, which maps dofs from a coarse element, fe, to the fine dofs on this finite element.
Trans represents the mapping from the reference element of this element into a subset of the reference space of the element fe, thus allowing the "coarse" FiniteElement to be different from the "fine" FiniteElement as when h-refinement is combined with p-refinement or p-derefinement. It is assumed that both finite elements use the same FiniteElement::MapType.
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, mfem::PositiveFiniteElement, and mfem::NodalFiniteElement.
|
inline |
Returns true if the FiniteElement basis may be using different orders/degrees in different spatial directions.
|
inlinestatic |
Return true if the BasisType of b_type is closed (has Quadrature1D points on the boundary).
|
inlinestatic |
Return true if the BasisType of b_type is open (doesn't have Quadrature1D points on the boundary).
|
virtual |
Given a coefficient and a transformation, compute its projection (approximation) in the local finite dimensional space in terms of the degrees of freedom.
Reimplemented in mfem::BiQuadPos2DFiniteElement, mfem::PositiveFiniteElement, and mfem::NodalFiniteElement.
|
virtual |
Given a vector coefficient and a transformation, compute its projection (approximation) in the local finite dimensional space in terms of the degrees of freedom. (VectorFiniteElements)
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, mfem::RT0TetFiniteElement, mfem::RT1HexFiniteElement, mfem::RT0HexFiniteElement, mfem::Nedelec1TetFiniteElement, mfem::Nedelec1HexFiniteElement, mfem::RT2QuadFiniteElement, mfem::RT1QuadFiniteElement, mfem::RT1TriangleFiniteElement, mfem::RT0QuadFiniteElement, mfem::RT0TriangleFiniteElement, mfem::BiQuadPos2DFiniteElement, mfem::PositiveFiniteElement, and mfem::NodalFiniteElement.
|
virtual |
Compute the embedding/projection matrix from the given FiniteElement onto 'this' FiniteElement. The ElementTransformation is included to support cases when the projection depends on it.
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, mfem::PositiveFiniteElement, and mfem::NodalFiniteElement.
|
virtual |
Compute the discrete curl matrix from the given FiniteElement onto 'this' FiniteElement. The ElementTransformation is included to support cases when the matrix depends on it.
Reimplemented in mfem::ND_TetrahedronElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, mfem::L2_TriangleElement, and mfem::L2_QuadrilateralElement.
|
virtual |
Project a delta function centered on the given vertex in the local finite dimensional space represented by the dofs.
Reimplemented in mfem::L2Pos_TetrahedronElement, mfem::L2_TetrahedronElement, mfem::L2Pos_TriangleElement, mfem::L2_TriangleElement, mfem::L2Pos_HexahedronElement, mfem::L2_HexahedronElement, mfem::L2Pos_QuadrilateralElement, mfem::L2_QuadrilateralElement, mfem::L2Pos_SegmentElement, mfem::L2_SegmentElement, mfem::H1Pos_HexahedronElement, mfem::H1Pos_QuadrilateralElement, mfem::H1Pos_SegmentElement, mfem::H1_HexahedronElement, mfem::H1_QuadrilateralElement, mfem::H1_SegmentElement, mfem::P0HexFiniteElement, mfem::P0TetFiniteElement, mfem::CrouzeixRaviartFiniteElement, mfem::TriLinear3DFiniteElement, mfem::Linear3DFiniteElement, mfem::P0QuadFiniteElement, mfem::P0TriangleFiniteElement, mfem::BiQuadPos2DFiniteElement, mfem::BiQuad2DFiniteElement, mfem::Quad2DFiniteElement, mfem::P1OnQuadFiniteElement, mfem::GaussBiLinear2DFiniteElement, mfem::GaussLinear2DFiniteElement, mfem::BiLinear2DFiniteElement, and mfem::Linear2DFiniteElement.
|
virtual |
Compute the discrete divergence matrix from the given FiniteElement onto 'this' FiniteElement. The ElementTransformation is included to support cases when the matrix depends on it.
Reimplemented in mfem::NodalFiniteElement.
|
virtual |
Given a vector of values at the finite element nodes and a transformation, compute its projection (approximation) in the local finite dimensional space in terms of the degrees of freedom. Valid for VectorFiniteElements.
Reimplemented in mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, and mfem::RT_QuadrilateralElement.
|
virtual |
Compute the discrete gradient matrix from the given FiniteElement onto 'this' FiniteElement. The ElementTransformation is included to support cases when the matrix depends on it.
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TriangleElement, mfem::RT_QuadrilateralElement, and mfem::NodalFiniteElement.
|
virtual |
Given a matrix coefficient and a transformation, compute an approximation ("projection") in the local finite dimensional space in terms of the degrees of freedom. For VectorFiniteElements, the rows of the coefficient are projected in the vector space.
Reimplemented in mfem::ND_SegmentElement, mfem::ND_TriangleElement, mfem::ND_TetrahedronElement, mfem::ND_QuadrilateralElement, mfem::ND_HexahedronElement, mfem::RT_TetrahedronElement, mfem::RT_TriangleElement, mfem::RT_HexahedronElement, mfem::RT_QuadrilateralElement, and mfem::NodalFiniteElement.
|
inline |
Returns the type of FunctionSpace on the element.
|
inlinestatic |
Ensure that the BasisType of b_type is closed (has Quadrature1D points on the boundary).
|
inlinestatic |
|
inlinestatic |
Ensure that the BasisType of b_type is open (doesn't have Quadrature1D points on the boundary).
|
protected |
|
mutableprotected |
Container for all DofToQuad objects created by the FiniteElement.
Multiple DofToQuad objects may be needed when different quadrature rules or different DofToQuad::Mode are used.
|
protected |
Geometry::Type of the reference element.
|
protected |
|
mutableprotected |
|
mutableprotected |
|
mutableprotected |