|
| ElasticityIntegrator (Coefficient &l, Coefficient &m) |
|
| ElasticityIntegrator (Coefficient &m, double q_l, double q_m) |
|
virtual void | AssembleElementMatrix (const FiniteElement &, ElementTransformation &, DenseMatrix &) |
| Given a particular Finite Element computes the element matrix elmat. More...
|
|
virtual void | ComputeElementFlux (const FiniteElement &el, ElementTransformation &Trans, Vector &u, const FiniteElement &fluxelem, Vector &flux, bool with_coef=true) |
|
virtual double | ComputeFluxEnergy (const FiniteElement &fluxelem, ElementTransformation &Trans, Vector &flux, Vector *d_energy=NULL) |
|
virtual void | AssemblePA (const FiniteElementSpace &fes) |
| Method defining partial assembly. More...
|
|
virtual void | AssemblePA (const FiniteElementSpace &trial_fes, const FiniteElementSpace &test_fes) |
|
virtual void | AssemblePAInteriorFaces (const FiniteElementSpace &fes) |
|
virtual void | AssemblePABoundaryFaces (const FiniteElementSpace &fes) |
|
virtual void | AssembleDiagonalPA (Vector &diag) |
| Assemble diagonal and add it to Vector diag. More...
|
|
virtual void | AddMultPA (const Vector &x, Vector &y) const |
| Method for partially assembled action. More...
|
|
virtual void | AddMultTransposePA (const Vector &x, Vector &y) const |
| Method for partially assembled transposed action. More...
|
|
virtual void | AssembleElementMatrix2 (const FiniteElement &trial_fe, const FiniteElement &test_fe, ElementTransformation &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleFaceMatrix (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleFaceMatrix (const FiniteElement &trial_face_fe, const FiniteElement &test_fe1, const FiniteElement &test_fe2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleElementVector (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, Vector &elvect) |
| Perform the local action of the BilinearFormIntegrator. More...
|
|
virtual void | AssembleElementGrad (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, DenseMatrix &elmat) |
| Assemble the local gradient matrix. More...
|
|
virtual void | AssembleFaceGrad (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, DenseMatrix &elmat) |
| Assemble the local action of the gradient of the NonlinearFormIntegrator resulting from a face integral term. More...
|
|
virtual | ~BilinearFormIntegrator () |
|
void | SetIntRule (const IntegrationRule *ir) |
| Prescribe a fixed IntegrationRule to use (when ir != NULL) or let the integrator choose (when ir == NULL). More...
|
|
void | SetIntegrationRule (const IntegrationRule &irule) |
| Prescribe a fixed IntegrationRule to use. More...
|
|
virtual void | AssembleFaceVector (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, Vector &elvect) |
| Perform the local action of the NonlinearFormIntegrator resulting from a face integral term. More...
|
|
virtual double | GetElementEnergy (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun) |
| Compute the local energy. More...
|
|
virtual | ~NonlinearFormIntegrator () |
|
Integrator for the linear elasticity form: a(u,v) = (lambda div(u), div(v)) + (2 mu e(u), e(v)), where e(v) = (1/2) (grad(v) + grad(v)^T). This is a 'Vector' integrator, i.e. defined for FE spaces using multiple copies of a scalar FE space.
Definition at line 2424 of file bilininteg.hpp.
Compute the stress corresponding to the local displacement u and interpolate it at the nodes of the given fluxelem. Only the symmetric part of the stress is stored, so that the size of flux is equal to the number of DOFs in fluxelem times dim*(dim+1)/2. In 2D, the order of the stress components is: s_xx, s_yy, s_xy. In 3D, it is: s_xx, s_yy, s_zz, s_xy, s_xz, s_yz. In other words, flux is the local vector for a FE space with dim*(dim+1)/2 vector components, based on the finite element fluxelem.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 2332 of file bilininteg.cpp.
Compute the element energy (integral of the strain energy density) corresponding to the stress represented by flux which is a vector of coefficients multiplying the basis functions defined by fluxelem. In other words, flux is the local vector for a FE space with dim*(dim+1)/2 vector components, based on the finite element fluxelem. The number of components, dim*(dim+1)/2 is such that it represents the symmetric part of the (symmetric) stress tensor. The order of the components is: s_xx, s_yy, s_xy in 2D, and s_xx, s_yy, s_zz, s_xy, s_xz, s_yz in 3D.
Reimplemented from mfem::BilinearFormIntegrator.
Definition at line 2408 of file bilininteg.cpp.