MFEM  v3.4
Finite element discretization library
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
Public Member Functions | Protected Attributes | List of all members
mfem::TMOP_Metric_252 Class Reference

Shifted barrier form of metric 56 (area, ideal barrier metric), 2D. More...

#include <tmop.hpp>

Inheritance diagram for mfem::TMOP_Metric_252:
[legend]
Collaboration diagram for mfem::TMOP_Metric_252:
[legend]

Public Member Functions

 TMOP_Metric_252 (double &t0)
 Note that t0 is stored by reference. More...
 
virtual double EvalW (const DenseMatrix &Jpt) const
 Evaluate the strain energy density function, W = W(Jpt). More...
 
virtual void EvalP (const DenseMatrix &Jpt, DenseMatrix &P) const
 Evaluate the 1st Piola-Kirchhoff stress tensor, P = P(Jpt). More...
 
virtual void AssembleH (const DenseMatrix &Jpt, const DenseMatrix &DS, const double weight, DenseMatrix &A) const
 Evaluate the derivative of the 1st Piola-Kirchhoff stress tensor and assemble its contribution to the local gradient matrix 'A'. More...
 
- Public Member Functions inherited from mfem::TMOP_QualityMetric
 TMOP_QualityMetric ()
 
virtual ~TMOP_QualityMetric ()
 
void SetTargetJacobian (const DenseMatrix &_Jtr)
 Specify the reference-element -> target-element Jacobian matrix for the point of interest. More...
 
- Public Member Functions inherited from mfem::HyperelasticModel
 HyperelasticModel ()
 
virtual ~HyperelasticModel ()
 
void SetTransformation (ElementTransformation &_Ttr)
 

Protected Attributes

double & tau0
 
InvariantsEvaluator2D< double > ie
 
- Protected Attributes inherited from mfem::TMOP_QualityMetric
const DenseMatrixJtr
 
- Protected Attributes inherited from mfem::HyperelasticModel
ElementTransformationTtr
 

Additional Inherited Members

- Protected Member Functions inherited from mfem::TMOP_QualityMetric
void SetTransformation (ElementTransformation &)
 The method SetTransformation() is hidden for TMOP_QualityMetrics, because it is not used. More...
 

Detailed Description

Shifted barrier form of metric 56 (area, ideal barrier metric), 2D.

Definition at line 265 of file tmop.hpp.

Constructor & Destructor Documentation

mfem::TMOP_Metric_252::TMOP_Metric_252 ( double &  t0)
inline

Note that t0 is stored by reference.

Definition at line 273 of file tmop.hpp.

Member Function Documentation

void mfem::TMOP_Metric_252::AssembleH ( const DenseMatrix Jpt,
const DenseMatrix DS,
const double  weight,
DenseMatrix A 
) const
virtual

Evaluate the derivative of the 1st Piola-Kirchhoff stress tensor and assemble its contribution to the local gradient matrix 'A'.

Parameters
[in]JptRepresents the target->physical transformation Jacobian matrix.
[in]DSGradient of the basis matrix (dof x dim).
[in]weightQuadrature weight coefficient for the point.
[in,out]ALocal gradient matrix where the contribution from this point will be added.

Computes weight * d(dW_dxi)_d(xj) at the current point, for all i and j, where x1 ... xn are the FE dofs. This function is usually defined using the matrix invariants and their derivatives.

Implements mfem::TMOP_QualityMetric.

Definition at line 373 of file tmop.cpp.

void mfem::TMOP_Metric_252::EvalP ( const DenseMatrix Jpt,
DenseMatrix P 
) const
virtual

Evaluate the 1st Piola-Kirchhoff stress tensor, P = P(Jpt).

Parameters
[in]JptRepresents the target->physical transformation Jacobian matrix.
[out]PThe evaluated 1st Piola-Kirchhoff stress tensor.

Implements mfem::TMOP_QualityMetric.

Definition at line 361 of file tmop.cpp.

double mfem::TMOP_Metric_252::EvalW ( const DenseMatrix Jpt) const
virtual

Evaluate the strain energy density function, W = W(Jpt).

Parameters
[in]JptRepresents the target->physical transformation Jacobian matrix.

Implements mfem::TMOP_QualityMetric.

Definition at line 353 of file tmop.cpp.

Member Data Documentation

InvariantsEvaluator2D<double> mfem::TMOP_Metric_252::ie
mutableprotected

Definition at line 269 of file tmop.hpp.

double& mfem::TMOP_Metric_252::tau0
protected

Definition at line 268 of file tmop.hpp.


The documentation for this class was generated from the following files: