MFEM  v3.4
Finite element discretization library
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
Public Member Functions | List of all members
mfem::GradientInterpolator Class Reference

#include <bilininteg.hpp>

Inheritance diagram for mfem::GradientInterpolator:
[legend]
Collaboration diagram for mfem::GradientInterpolator:
[legend]

Public Member Functions

virtual void AssembleElementMatrix2 (const FiniteElement &h1_fe, const FiniteElement &nd_fe, ElementTransformation &Trans, DenseMatrix &elmat)
 
- Public Member Functions inherited from mfem::BilinearFormIntegrator
virtual void AssembleElementMatrix (const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat)
 Given a particular Finite Element computes the element matrix elmat. More...
 
virtual void AssembleFaceMatrix (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Trans, DenseMatrix &elmat)
 
virtual void AssembleFaceMatrix (const FiniteElement &trial_face_fe, const FiniteElement &test_fe1, const FiniteElement &test_fe2, FaceElementTransformations &Trans, DenseMatrix &elmat)
 
virtual void AssembleElementVector (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, Vector &elvect)
 Perform the local action of the BilinearFormIntegrator. More...
 
virtual void AssembleElementGrad (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, DenseMatrix &elmat)
 Assemble the local gradient matrix. More...
 
virtual void AssembleFaceGrad (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, DenseMatrix &elmat)
 Assemble the local action of the gradient of the NonlinearFormIntegrator resulting from a face integral term. More...
 
virtual void ComputeElementFlux (const FiniteElement &el, ElementTransformation &Trans, Vector &u, const FiniteElement &fluxelem, Vector &flux, int with_coef=1)
 
virtual double ComputeFluxEnergy (const FiniteElement &fluxelem, ElementTransformation &Trans, Vector &flux, Vector *d_energy=NULL)
 
virtual ~BilinearFormIntegrator ()
 
- Public Member Functions inherited from mfem::NonlinearFormIntegrator
void SetIntRule (const IntegrationRule *ir)
 Prescribe a fixed IntegrationRule to use (when ir != NULL) or let the integrator choose (when ir == NULL). More...
 
void SetIntegrationRule (const IntegrationRule &irule)
 Prescribe a fixed IntegrationRule to use. More...
 
virtual void AssembleFaceVector (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, const Vector &elfun, Vector &elvect)
 Perform the local action of the NonlinearFormIntegrator resulting from a face integral term. More...
 
virtual double GetElementEnergy (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun)
 Compute the local energy. More...
 
virtual ~NonlinearFormIntegrator ()
 

Additional Inherited Members

- Protected Member Functions inherited from mfem::BilinearFormIntegrator
 BilinearFormIntegrator (const IntegrationRule *ir=NULL)
 
- Protected Member Functions inherited from mfem::NonlinearFormIntegrator
 NonlinearFormIntegrator (const IntegrationRule *ir=NULL)
 
- Protected Attributes inherited from mfem::NonlinearFormIntegrator
const IntegrationRuleIntRule
 

Detailed Description

Class for constructing the gradient as a DiscreteLinearOperator from an H1-conforming space to an H(curl)-conforming space. The range space can be vector L2 space as well.

Definition at line 2263 of file bilininteg.hpp.

Member Function Documentation

virtual void mfem::GradientInterpolator::AssembleElementMatrix2 ( const FiniteElement trial_fe,
const FiniteElement test_fe,
ElementTransformation Trans,
DenseMatrix elmat 
)
inlinevirtual

Compute the local matrix representation of a bilinear form a(u,v) defined on different trial (given by u) and test (given by v) spaces. The rows in the local matrix correspond to the test dofs and the columns – to the trial dofs.

Reimplemented from mfem::BilinearFormIntegrator.

Definition at line 2266 of file bilininteg.hpp.


The documentation for this class was generated from the following file: