22 mfem_error(
"LinearFormIntegrator::AssembleRHSElementVect(...)");
53 add(elvect, ip.
weight * val, shape, elvect);
69 int intorder = oa * el.
GetOrder() + ob;
82 add(elvect, ip.
weight * val, shape, elvect);
100 int intorder = oa * el.
GetOrder() + ob;
110 Q.
Eval(Qvec, Tr, ip);
123 Vector tangent(dim), Qvec;
131 mfem_error(
"These methods make sense only in 2D problems.");
137 int intorder = oa * el.
GetOrder() + ob;
147 tangent(0) = Jac(0,0);
148 tangent(1) = Jac(1,0);
150 Q.
Eval(Qvec, Tr, ip);
154 add(elvect, ip.
weight*(Qvec*tangent), shape, elvect);
186 Q.
Eval (Qvec, Tr, ip);
188 for (
int k = 0; k < vdim; k++)
192 for (
int s = 0; s < dof; s++)
194 elvect(dof*k+s) += ip.
weight * cf * shape(s);
227 for (
int k = 0; k < vdim; k++)
228 for (
int s = 0; s < dof; s++)
230 elvect(dof*k+s) += vec(k) * shape(s);
264 for (
int k = 0; k < vdim; k++)
266 for (
int s = 0; s < dof; s++)
268 elvect(dof*k+s) += vec(k) * shape(s);
302 QF.
Eval (vec, Tr, ip);
333 nor *= Sign * ip.
weight * F -> Eval (Tr, ip);
334 for (
int j = 0; j < dof; j++)
335 for (
int k = 0; k <
dim; k++)
337 elvect(dof*k+j) += nor(k) * shape(j);
368 add(elvect, val, shape, elvect);
396 f.
Eval(f_loc, Tr, ip);
400 Swap<double>(f_hat(0), f_hat(1));
401 f_hat(0) = -f_hat(0);
411 mfem_error(
"BoundaryFlowIntegrator::AssembleRHSElementVect\n"
412 " is not implemented as boundary integrator!\n"
413 " Use LinearForm::AddBdrFaceIntegrator instead of\n"
414 " LinearForm::AddBoundaryIntegrator.");
420 int dim, ndof, order;
421 double un, w, vu_data[3], nor_data[3];
425 Vector vu(vu_data, dim), nor(nor_data, dim);
456 nor(0) = 2*eip.
x - 1.0;
464 w = 0.5*alpha*un - beta*fabs(un);
466 elvect.
Add(w, shape);
474 mfem_error(
"DGDirichletLFIntegrator::AssembleRHSElementVect");
481 bool kappa_is_nonzero = (
kappa != 0.);
520 nor(0) = 2*eip.
x - 1.0;
552 if (kappa_is_nonzero)
563 mfem_error(
"DGElasticityDirichletLFIntegrator::AssembleRHSElementVect");
569 MFEM_ASSERT(Tr.
Elem2No < 0,
"interior boundary is not supported");
571 #ifdef MFEM_THREAD_SAFE
583 const int ndofs = el.
GetDof();
584 const int nvdofs = dim*ndofs;
620 Mult(dshape, adjJ, dshape_ps);
624 nor(0) = 2*eip.
x - 1.0;
631 double wL, wM, jcoef;
636 jcoef =
kappa * (wL + 2.0*wM) * (nor*nor);
637 dshape_ps.
Mult(nor, dshape_dn);
638 dshape_ps.
Mult(u_dir, dshape_du);
679 const double t1 =
alpha * wL * (u_dir*
nor);
680 for (
int im = 0, i = 0; im <
dim; ++im)
682 const double t2 = wM *
u_dir(im);
683 const double t3 = wM *
nor(im);
684 const double tj = jcoef *
u_dir(im);
685 for (
int idof = 0; idof < ndofs; ++idof, ++i)
int GetNPoints() const
Returns the number of the points in the integration rule.
Abstract class for Finite Elements.
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
int GetDim() const
Returns the reference space dimension for the finite element.
Class for an integration rule - an Array of IntegrationPoint.
virtual void CalcVShape(const IntegrationPoint &ip, DenseMatrix &shape) const
Evaluate the values of all shape functions of a vector finite element in reference space at the given...
const IntegrationRule & Get(int GeomType, int Order)
Returns an integration rule for given GeomType and Order.
virtual void Eval(Vector &V, ElementTransformation &T, const IntegrationPoint &ip)=0
void SetSize(int s)
Resize the vector to size s.
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
void Mult(const Table &A, const Table &B, Table &C)
C = A * B (as boolean matrices)
virtual void Eval(DenseMatrix &K, ElementTransformation &T, const IntegrationPoint &ip)=0
void CalcAdjugate(const DenseMatrix &a, DenseMatrix &adja)
int GetOrder() const
Returns the order of the finite element.
Data type dense matrix using column-major storage.
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
int Space() const
Returns the type of space on each element.
void CalcOrtho(const DenseMatrix &J, Vector &n)
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
void add(const Vector &v1, const Vector &v2, Vector &v)
IntegrationPoint & IntPoint(int i)
Returns a reference to the i-th integration point.
void MultTranspose(const double *x, double *y) const
Multiply a vector with the transpose matrix.
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
virtual void CalcShape(const IntegrationPoint &ip, Vector &shape) const =0
Evaluate the values of all shape functions of a scalar finite element in reference space at the given...
int GetVDim()
Returns dimension of the vector.
void AddMult(const Vector &x, Vector &y) const
y += A.x
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
int GetGeomType() const
Returns the Geometry::Type of the reference element.
int GetDof() const
Returns the number of degrees of freedom in the finite element.
void mfem_error(const char *msg)
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
Vector & Set(const double a, const Vector &x)
(*this) = a * x
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
Vector & Add(const double a, const Vector &Va)
(*this) += a * Va
Class for integration point with weight.
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
virtual double Eval(ElementTransformation &T, const IntegrationPoint &ip)=0
void Mult(const double *x, double *y) const
Matrix vector multiplication.
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
virtual void AssembleRHSElementVect(const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
void SetSize(int s)
Change the size of the DenseMatrix to s x s.
virtual void CalcDShape(const IntegrationPoint &ip, DenseMatrix &dshape) const =0
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the gi...
IntegrationRules IntRules(0, Quadrature1D::GaussLegendre)
A global object with all integration rules (defined in intrules.cpp)