|
| DGDiffusionIntegrator (const double s, const double k) |
|
| DGDiffusionIntegrator (Coefficient &q, const double s, const double k) |
|
| DGDiffusionIntegrator (MatrixCoefficient &q, const double s, const double k) |
|
virtual void | AssembleFaceMatrix (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleElementMatrix (const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat) |
| Given a particular Finite Element computes the element matrix elmat. More...
|
|
virtual void | AssembleElementMatrix2 (const FiniteElement &trial_fe, const FiniteElement &test_fe, ElementTransformation &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleFaceMatrix (const FiniteElement &trial_face_fe, const FiniteElement &test_fe1, const FiniteElement &test_fe2, FaceElementTransformations &Trans, DenseMatrix &elmat) |
|
virtual void | AssembleElementVector (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, Vector &elvect) |
| Perform the local action of the BilinearFormIntegrator. More...
|
|
virtual void | AssembleElementGrad (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun, DenseMatrix &elmat) |
| Assemble the local gradient matrix. More...
|
|
virtual void | ComputeElementFlux (const FiniteElement &el, ElementTransformation &Trans, Vector &u, const FiniteElement &fluxelem, Vector &flux, int with_coef=1) |
|
virtual double | ComputeFluxEnergy (const FiniteElement &fluxelem, ElementTransformation &Trans, Vector &flux, Vector *d_energy=NULL) |
|
void | SetIntRule (const IntegrationRule *ir) |
|
virtual | ~BilinearFormIntegrator () |
|
virtual double | GetElementEnergy (const FiniteElement &el, ElementTransformation &Tr, const Vector &elfun) |
| Compute the local energy. More...
|
|
virtual | ~NonlinearFormIntegrator () |
|
Integrator for the DG form:
- < {(Q grad(u)).n}, [v] > + sigma < [u], {(Q grad(v)).n} >
- kappa < {h^{-1} Q} [u], [v] >,
where Q is a scalar or matrix diffusion coefficient and u, v are the trial and test spaces, respectively. The parameters sigma and kappa determine the DG method to be used (when this integrator is added to the "broken" DiffusionIntegrator): sigma = -1, kappa >= kappa0: symm. interior penalty (IP or SIPG) method, sigma = +1, kappa > 0: non-symmetric interior penalty (NIPG) method, sigma = +1, kappa = 0: the method of Baumann and Oden.
Definition at line 639 of file bilininteg.hpp.