MFEM  v3.1
Finite element discretization library
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
Public Member Functions | Protected Attributes | List of all members
mfem::InverseHarmonicModel Class Reference

#include <nonlininteg.hpp>

Inheritance diagram for mfem::InverseHarmonicModel:
[legend]
Collaboration diagram for mfem::InverseHarmonicModel:
[legend]

Public Member Functions

virtual double EvalW (const DenseMatrix &J) const
 Evaluate the strain energy density function, W=W(J). More...
 
virtual void EvalP (const DenseMatrix &J, DenseMatrix &P) const
 Evaluate the 1st Piola-Kirchhoff stress tensor, P=P(J). More...
 
virtual void AssembleH (const DenseMatrix &J, const DenseMatrix &DS, const double weight, DenseMatrix &A) const
 
- Public Member Functions inherited from mfem::HyperelasticModel
 HyperelasticModel ()
 
void SetTransformation (ElementTransformation &_T)
 An element transformation that can be used to evaluate coefficients. More...
 
virtual ~HyperelasticModel ()
 

Protected Attributes

DenseMatrix Z
 
DenseMatrix S
 
DenseMatrix G
 
DenseMatrix C
 
- Protected Attributes inherited from mfem::HyperelasticModel
ElementTransformationT
 

Detailed Description

Inverse-harmonic hyperelastic model with a strain energy density function given by the formula: W(J) = (1/2) det(J) Tr((J J^t)^{-1}) where J is the deformation gradient.

Definition at line 80 of file nonlininteg.hpp.

Member Function Documentation

void mfem::InverseHarmonicModel::AssembleH ( const DenseMatrix J,
const DenseMatrix DS,
const double  weight,
DenseMatrix A 
) const
virtual

Evaluate the derivative of the 1st Piola-Kirchhoff stress tensor and assemble its contribution to the local gradient matrix 'A'. 'DS' is the gradient of the basis matrix (dof x dim), and 'weight' is the quadrature weight.

Implements mfem::HyperelasticModel.

Definition at line 60 of file nonlininteg.cpp.

void mfem::InverseHarmonicModel::EvalP ( const DenseMatrix J,
DenseMatrix P 
) const
virtual

Evaluate the 1st Piola-Kirchhoff stress tensor, P=P(J).

Implements mfem::HyperelasticModel.

Definition at line 41 of file nonlininteg.cpp.

double mfem::InverseHarmonicModel::EvalW ( const DenseMatrix J) const
virtual

Evaluate the strain energy density function, W=W(J).

Implements mfem::HyperelasticModel.

Definition at line 34 of file nonlininteg.cpp.

Member Data Documentation

DenseMatrix mfem::InverseHarmonicModel::C
mutableprotected

Definition at line 84 of file nonlininteg.hpp.

DenseMatrix mfem::InverseHarmonicModel::G
mutableprotected

Definition at line 84 of file nonlininteg.hpp.

DenseMatrix mfem::InverseHarmonicModel::S
mutableprotected

Definition at line 83 of file nonlininteg.hpp.

DenseMatrix mfem::InverseHarmonicModel::Z
mutableprotected

Definition at line 83 of file nonlininteg.hpp.


The documentation for this class was generated from the following files: