26#ifndef MFEM_THREAD_SAFE
34 for (
int i = 1; i <
p; i++)
45#ifdef MFEM_THREAD_SAFE
51 shape(0) = shape_x(0);
52 shape(1) = shape_x(
p);
53 for (
int i = 1; i <
p; i++)
55 shape(i+1) = shape_x(i);
64#ifdef MFEM_THREAD_SAFE
70 dshape(0,0) = dshape_x(0);
71 dshape(1,0) = dshape_x(
p);
72 for (
int i = 1; i <
p; i++)
74 dshape(i+1,0) = dshape_x(i);
83#ifdef MFEM_THREAD_SAFE
84 Vector shape_x(
p+1), dshape_x(
p+1), d2shape_x(
p+1);
89 Hessian(0,0) = d2shape_x(0);
90 Hessian(1,0) = d2shape_x(
p);
91 for (
int i = 1; i <
p; i++)
93 Hessian(i+1,0) = d2shape_x(i);
107 for (
int i = 1; i <
p; i++)
116 for (
int i = 1; i <
p; i++)
130#ifndef MFEM_THREAD_SAFE
131 const int p1 =
p + 1;
142 for (
int j = 0; j <=
p; j++)
144 for (
int i = 0; i <=
p; i++)
156#ifdef MFEM_THREAD_SAFE
163 for (
int o = 0, j = 0; j <=
p; j++)
164 for (
int i = 0; i <=
p; i++)
166 shape(
dof_map[o++]) = shape_x(i)*shape_y(j);
175#ifdef MFEM_THREAD_SAFE
176 Vector shape_x(
p+1), shape_y(
p+1), dshape_x(
p+1), dshape_y(
p+1);
182 for (
int o = 0, j = 0; j <=
p; j++)
184 for (
int i = 0; i <=
p; i++)
186 dshape(
dof_map[o],0) = dshape_x(i)* shape_y(j);
187 dshape(
dof_map[o],1) = shape_x(i)*dshape_y(j); o++;
197#ifdef MFEM_THREAD_SAFE
198 Vector shape_x(
p+1), shape_y(
p+1), dshape_x(
p+1), dshape_y(
p+1),
199 d2shape_x(
p+1), d2shape_y(
p+1);
205 for (
int o = 0, j = 0; j <=
p; j++)
207 for (
int i = 0; i <=
p; i++)
209 Hessian(
dof_map[o],0) = d2shape_x(i)* shape_y(j);
210 Hessian(
dof_map[o],1) = dshape_x(i)* dshape_y(j);
211 Hessian(
dof_map[o],2) = shape_x(i)*d2shape_y(j); o++;
221#ifdef MFEM_THREAD_SAFE
225 for (
int i = 0; i <=
p; i++)
234 for (
int o = 0, j = 0; j <=
p; j++)
235 for (
int i = 0; i <=
p; i++)
237 dofs(
dof_map[o++]) = shape_x(i)*shape_x(j);
241 for (
int o = 0, j = 0; j <=
p; j++)
242 for (
int i = 0; i <=
p; i++)
244 dofs(
dof_map[o++]) = shape_y(i)*shape_x(j);
248 for (
int o = 0, j = 0; j <=
p; j++)
249 for (
int i = 0; i <=
p; i++)
251 dofs(
dof_map[o++]) = shape_y(i)*shape_y(j);
255 for (
int o = 0, j = 0; j <=
p; j++)
256 for (
int i = 0; i <=
p; i++)
258 dofs(
dof_map[o++]) = shape_x(i)*shape_y(j);
270#ifndef MFEM_THREAD_SAFE
271 const int p1 =
p + 1;
285 for (
int k = 0; k <=
p; k++)
286 for (
int j = 0; j <=
p; j++)
287 for (
int i = 0; i <=
p; i++)
298#ifdef MFEM_THREAD_SAFE
299 Vector shape_x(
p+1), shape_y(
p+1), shape_z(
p+1);
306 for (
int o = 0, k = 0; k <=
p; k++)
307 for (
int j = 0; j <=
p; j++)
308 for (
int i = 0; i <=
p; i++)
310 shape(
dof_map[o++]) = shape_x(i)*shape_y(j)*shape_z(k);
319#ifdef MFEM_THREAD_SAFE
320 Vector shape_x(
p+1), shape_y(
p+1), shape_z(
p+1);
321 Vector dshape_x(
p+1), dshape_y(
p+1), dshape_z(
p+1);
328 for (
int o = 0, k = 0; k <=
p; k++)
329 for (
int j = 0; j <=
p; j++)
330 for (
int i = 0; i <=
p; i++)
332 dshape(
dof_map[o],0) = dshape_x(i)* shape_y(j)* shape_z(k);
333 dshape(
dof_map[o],1) = shape_x(i)*dshape_y(j)* shape_z(k);
334 dshape(
dof_map[o],2) = shape_x(i)* shape_y(j)*dshape_z(k); o++;
343#ifdef MFEM_THREAD_SAFE
344 Vector shape_x(
p+1), shape_y(
p+1), shape_z(
p+1);
345 Vector dshape_x(
p+1), dshape_y(
p+1), dshape_z(
p+1);
346 Vector d2shape_x(
p+1), d2shape_y(
p+1), d2shape_z(
p+1);
353 for (
int o = 0, k = 0; k <=
p; k++)
354 for (
int j = 0; j <=
p; j++)
355 for (
int i = 0; i <=
p; i++)
357 Hessian(
dof_map[o],0) = d2shape_x(i)* shape_y(j)* shape_z(k);
358 Hessian(
dof_map[o],1) = dshape_x(i)* dshape_y(j)* shape_z(k);
359 Hessian(
dof_map[o],2) = dshape_x(i)* shape_y(j)* dshape_z(k);
360 Hessian(
dof_map[o],3) = shape_x(i)*d2shape_y(j)* shape_z(k);
361 Hessian(
dof_map[o],4) = shape_x(i)* dshape_y(j)* dshape_z(k);
362 Hessian(
dof_map[o],5) = shape_x(i)* shape_y(j)*d2shape_z(k);
372#ifdef MFEM_THREAD_SAFE
376 for (
int i = 0; i <=
p; i++)
385 for (
int o = 0, k = 0; k <=
p; k++)
386 for (
int j = 0; j <=
p; j++)
387 for (
int i = 0; i <=
p; i++)
389 dofs(
dof_map[o++]) = shape_x(i)*shape_x(j)*shape_x(k);
393 for (
int o = 0, k = 0; k <=
p; k++)
394 for (
int j = 0; j <=
p; j++)
395 for (
int i = 0; i <=
p; i++)
397 dofs(
dof_map[o++]) = shape_y(i)*shape_x(j)*shape_x(k);
401 for (
int o = 0, k = 0; k <=
p; k++)
402 for (
int j = 0; j <=
p; j++)
403 for (
int i = 0; i <=
p; i++)
405 dofs(
dof_map[o++]) = shape_y(i)*shape_y(j)*shape_x(k);
409 for (
int o = 0, k = 0; k <=
p; k++)
410 for (
int j = 0; j <=
p; j++)
411 for (
int i = 0; i <=
p; i++)
413 dofs(
dof_map[o++]) = shape_x(i)*shape_y(j)*shape_x(k);
417 for (
int o = 0, k = 0; k <=
p; k++)
418 for (
int j = 0; j <=
p; j++)
419 for (
int i = 0; i <=
p; i++)
421 dofs(
dof_map[o++]) = shape_x(i)*shape_x(j)*shape_y(k);
425 for (
int o = 0, k = 0; k <=
p; k++)
426 for (
int j = 0; j <=
p; j++)
427 for (
int i = 0; i <=
p; i++)
429 dofs(
dof_map[o++]) = shape_y(i)*shape_x(j)*shape_y(k);
433 for (
int o = 0, k = 0; k <=
p; k++)
434 for (
int j = 0; j <=
p; j++)
435 for (
int i = 0; i <=
p; i++)
437 dofs(
dof_map[o++]) = shape_y(i)*shape_y(j)*shape_y(k);
441 for (
int o = 0, k = 0; k <=
p; k++)
442 for (
int j = 0; j <=
p; j++)
443 for (
int i = 0; i <=
p; i++)
445 dofs(
dof_map[o++]) = shape_x(i)*shape_y(j)*shape_y(k);
457#ifndef MFEM_THREAD_SAFE
471 Vector shape_x(
p + 1), shape_y(
p + 1), shape_l(
p + 1);
475 auto idx = [p2p3](
int i,
int j) {
return ((p2p3-j)*j)/2+i; };
488 for (
int i = 1; i <
p; i++)
493 for (
int i = 1; i <
p; i++)
498 for (
int i = 1; i <
p; i++)
505 for (
int j = 1; j <
p; j++)
506 for (
int i = 1; i + j <
p; i++)
508 const real_t w = cp[i] + cp[j] + cp[
p-i-j];
514 for (
int k = 0; k <
dof; k++)
522 for (
int j = 0; j <=
p; j++)
523 for (
int i = 0; i + j <=
p; i++)
525 T(o++, k) = shape_x(i)*shape_y(j)*shape_l(
p-i-j);
538#ifdef MFEM_THREAD_SAFE
539 Vector shape_x(
p + 1), shape_y(
p + 1), shape_l(
p + 1), u(
dof);
546 for (
int o = 0, j = 0; j <=
p; j++)
547 for (
int i = 0; i + j <=
p; i++)
549 u(o++) = shape_x(i)*shape_y(j)*shape_l(
p-i-j);
560#ifdef MFEM_THREAD_SAFE
561 Vector shape_x(
p + 1), shape_y(
p + 1), shape_l(
p + 1);
562 Vector dshape_x(
p + 1), dshape_y(
p + 1), dshape_l(
p + 1);
570 for (
int o = 0, j = 0; j <=
p; j++)
571 for (
int i = 0; i + j <=
p; i++)
574 du(o,0) = ((dshape_x(i)* shape_l(k)) -
575 ( shape_x(i)*dshape_l(k)))*shape_y(j);
576 du(o,1) = ((dshape_y(j)* shape_l(k)) -
577 ( shape_y(j)*dshape_l(k)))*shape_x(i);
588#ifdef MFEM_THREAD_SAFE
589 Vector shape_x(
p + 1), shape_y(
p + 1), shape_l(
p + 1);
590 Vector dshape_x(
p + 1), dshape_y(
p + 1), dshape_l(
p + 1);
591 Vector ddshape_x(
p + 1), ddshape_y(
p + 1), ddshape_l(
p + 1);
599 for (
int o = 0, j = 0; j <=
p; j++)
600 for (
int i = 0; i + j <=
p; i++)
604 ddu(o,0) = ((ddshape_x(i) * shape_l(k)) - 2. * (dshape_x(i) * dshape_l(k)) +
605 (shape_x(i) * ddshape_l(k))) * shape_y(j);
606 ddu(o,1) = (((shape_x(i) * ddshape_l(k)) - dshape_x(i) * dshape_l(k)) * shape_y(
607 j)) + (((dshape_x(i) * shape_l(k)) - (shape_x(i) * dshape_l(k))) * dshape_y(j));
608 ddu(o,2) = ((ddshape_y(j) * shape_l(k)) - 2. * (dshape_y(j) * dshape_l(k)) +
609 (shape_y(j) * ddshape_l(k))) * shape_x(i);
613 Ti.
Mult(ddu, ddshape);
623#ifndef MFEM_THREAD_SAFE
640 Vector shape_x(
p + 1), shape_y(
p + 1), shape_z(
p + 1), shape_l(
p + 1);
643 auto tri = [](
int k) {
return (k*(k + 1))/2; };
644 auto tet = [](
int k) {
return (k*(k + 1)*(k + 2))/6; };
646 auto idx = [tri, tet,
p, ndof](
int i,
int j,
int k)
648 return ndof - tet(
p - k) - tri(
p + 1 - k - j) + i;
665 for (
int i = 1; i <
p; i++)
670 for (
int i = 1; i <
p; i++)
675 for (
int i = 1; i <
p; i++)
680 for (
int i = 1; i <
p; i++)
685 for (
int i = 1; i <
p; i++)
690 for (
int i = 1; i <
p; i++)
697 for (
int j = 1; j <
p; j++)
698 for (
int i = 1; i + j <
p; i++)
701 real_t w = cp[i] + cp[j] + cp[
p-i-j];
704 for (
int j = 1; j <
p; j++)
705 for (
int i = 1; i + j <
p; i++)
708 real_t w = cp[i] + cp[j] + cp[
p-i-j];
711 for (
int j = 1; j <
p; j++)
712 for (
int i = 1; i + j <
p; i++)
715 real_t w = cp[i] + cp[j] + cp[
p-i-j];
718 for (
int j = 1; j <
p; j++)
719 for (
int i = 1; i + j <
p; i++)
722 real_t w = cp[i] + cp[j] + cp[
p-i-j];
727 for (
int k = 1; k <
p; k++)
728 for (
int j = 1; j + k <
p; j++)
729 for (
int i = 1; i + j + k <
p; i++)
732 real_t w = cp[i] + cp[j] + cp[k] + cp[
p-i-j-k];
737 for (
int m = 0; m <
dof; m++)
746 for (
int k = 0; k <=
p; k++)
747 for (
int j = 0; j + k <=
p; j++)
748 for (
int i = 0; i + j + k <=
p; i++)
750 T(o++, m) = shape_x(i)*shape_y(j)*shape_z(k)*shape_l(
p-i-j-k);
763#ifdef MFEM_THREAD_SAFE
764 Vector shape_x(
p + 1), shape_y(
p + 1), shape_z(
p + 1), shape_l(
p + 1);
773 for (
int o = 0, k = 0; k <=
p; k++)
774 for (
int j = 0; j + k <=
p; j++)
775 for (
int i = 0; i + j + k <=
p; i++)
777 u(o++) = shape_x(i)*shape_y(j)*shape_z(k)*shape_l(
p-i-j-k);
788#ifdef MFEM_THREAD_SAFE
789 Vector shape_x(
p + 1), shape_y(
p + 1), shape_z(
p + 1), shape_l(
p + 1);
790 Vector dshape_x(
p + 1), dshape_y(
p + 1), dshape_z(
p + 1), dshape_l(
p + 1);
799 for (
int o = 0, k = 0; k <=
p; k++)
800 for (
int j = 0; j + k <=
p; j++)
801 for (
int i = 0; i + j + k <=
p; i++)
803 int l =
p - i - j - k;
804 du(o,0) = ((dshape_x(i)* shape_l(l)) -
805 ( shape_x(i)*dshape_l(l)))*shape_y(j)*shape_z(k);
806 du(o,1) = ((dshape_y(j)* shape_l(l)) -
807 ( shape_y(j)*dshape_l(l)))*shape_x(i)*shape_z(k);
808 du(o,2) = ((dshape_z(k)* shape_l(l)) -
809 ( shape_z(k)*dshape_l(l)))*shape_x(i)*shape_y(j);
821#ifdef MFEM_THREAD_SAFE
822 Vector shape_x(
p + 1), shape_y(
p + 1), shape_z(
p + 1), shape_l(
p + 1);
823 Vector dshape_x(
p + 1), dshape_y(
p + 1), dshape_z(
p + 1), dshape_l(
p + 1);
824 Vector ddshape_x(
p + 1), ddshape_y(
p + 1), ddshape_z(
p + 1), ddshape_l(
p + 1);
833 for (
int o = 0, k = 0; k <=
p; k++)
834 for (
int j = 0; j + k <=
p; j++)
835 for (
int i = 0; i + j + k <=
p; i++)
838 int l =
p - i - j - k;
839 ddu(o,0) = ((ddshape_x(i) * shape_l(l)) - 2. * (dshape_x(i) * dshape_l(l)) +
840 (shape_x(i) * ddshape_l(l))) * shape_y(j) * shape_z(k);
841 ddu(o,1) = ((dshape_y(j) * ((dshape_x(i) * shape_l(l)) -
842 (shape_x(i) * dshape_l(l)))) +
843 (shape_y(j) * ((ddshape_l(l) * shape_x(i)) -
844 (dshape_x(i) * dshape_l(l)))))* shape_z(k);
845 ddu(o,2) = ((dshape_z(k) * ((dshape_x(i) * shape_l(l)) -
846 (shape_x(i) * dshape_l(l)))) +
847 (shape_z(k) * ((ddshape_l(l) * shape_x(i)) -
848 (dshape_x(i) * dshape_l(l)))))* shape_y(j);
849 ddu(o,3) = ((ddshape_y(j) * shape_l(l)) - 2. * (dshape_y(j) * dshape_l(l)) +
850 (shape_y(j) * ddshape_l(l))) * shape_x(i) * shape_z(k);
851 ddu(o,4) = ((dshape_z(k) * ((dshape_y(j) * shape_l(l)) -
852 (shape_y(j)*dshape_l(l))) ) +
853 (shape_z(k)* ((ddshape_l(l)*shape_y(j)) -
854 (dshape_y(j) * dshape_l(l)) ) ) )* shape_x(i);
855 ddu(o,5) = ((ddshape_z(k) * shape_l(l)) - 2. * (dshape_z(k) * dshape_l(l)) +
856 (shape_z(k) * ddshape_l(l))) * shape_y(j) * shape_x(i);
859 Ti.
Mult(ddu, ddshape);
870#ifndef MFEM_THREAD_SAFE
880 int p2p3 = 2*
p + 3, ntri = ((
p + 1)*(
p + 2))/2;
881 auto idx = [p2p3,ntri](
int i,
int j,
int k)
883 return k*ntri + ((p2p3-j)*j)/2+i;
896 t_dof[0] = 0; s_dof[0] = 0;
897 t_dof[1] = 1; s_dof[1] = 0;
898 t_dof[2] = 2; s_dof[2] = 0;
899 t_dof[3] = 0; s_dof[3] = 1;
900 t_dof[4] = 1; s_dof[4] = 1;
901 t_dof[5] = 2; s_dof[5] = 1;
906 for (
int i=1; i<
p; i++)
917 t_dof[5 + 0 * ne + i] = 2 + 0 * ne + i; s_dof[5 + 0 * ne + i] = 0;
918 t_dof[5 + 1 * ne + i] = 2 + 1 * ne + i; s_dof[5 + 1 * ne + i] = 0;
919 t_dof[5 + 2 * ne + i] = 2 + 2 * ne + i; s_dof[5 + 2 * ne + i] = 0;
920 t_dof[5 + 3 * ne + i] = 2 + 0 * ne + i; s_dof[5 + 3 * ne + i] = 1;
921 t_dof[5 + 4 * ne + i] = 2 + 1 * ne + i; s_dof[5 + 4 * ne + i] = 1;
922 t_dof[5 + 5 * ne + i] = 2 + 2 * ne + i; s_dof[5 + 5 * ne + i] = 1;
923 t_dof[5 + 6 * ne + i] = 0; s_dof[5 + 6 * ne + i] = i + 1;
924 t_dof[5 + 7 * ne + i] = 1; s_dof[5 + 7 * ne + i] = i + 1;
925 t_dof[5 + 8 * ne + i] = 2; s_dof[5 + 8 * ne + i] = i + 1;
932 int nt = (
p-1)*(
p-2)/2;
933 for (
int j=1; j<
p; j++)
935 for (
int i=1; i<
p-j; i++)
937 int l = j -
p + (((2 *
p - 1) - i) * i) / 2;
940 t_dof[6 + 9 * ne + k] = 3 *
p + l; s_dof[6 + 9 * ne + k] = 0;
941 t_dof[6 + 9 * ne + nt + k] = 3 *
p + k; s_dof[6 + 9 * ne + nt + k] = 1;
949 int nq = (
p-1)*(
p-1);
950 for (
int j=1; j<
p; j++)
952 for (
int i=1; i<
p; i++)
958 t_dof[6 + 9 * ne + 2 * nt + 0 * nq + k] = 2 + 0 * ne + i;
959 t_dof[6 + 9 * ne + 2 * nt + 1 * nq + k] = 2 + 1 * ne + i;
960 t_dof[6 + 9 * ne + 2 * nt + 2 * nq + k] = 2 + 2 * ne + i;
962 s_dof[6 + 9 * ne + 2 * nt + 0 * nq + k] = 1 + j;
963 s_dof[6 + 9 * ne + 2 * nt + 1 * nq + k] = 1 + j;
964 s_dof[6 + 9 * ne + 2 * nt + 2 * nq + k] = 1 + j;
976 for (
int j=1; j<
p; j++)
978 for (
int i=1; i+j<
p; i++)
981 t_dof[6 + 9 * ne + 2 * nt + 3 * nq + m] = 3 *
p + l;
982 s_dof[6 + 9 * ne + 2 * nt + 3 * nq + m] = 1 + k;
991 for (
int i=0; i<
dof; i++)
1002#ifdef MFEM_THREAD_SAFE
1012 for (
int i=0; i<
dof; i++)
1014 shape[i] = t_shape[t_dof[i]] * s_shape[s_dof[i]];
1021#ifdef MFEM_THREAD_SAFE
1035 for (
int i=0; i<
dof; i++)
1037 dshape(i, 0) = t_dshape(t_dof[i],0) * s_shape[s_dof[i]];
1038 dshape(i, 1) = t_dshape(t_dof[i],1) * s_shape[s_dof[i]];
1039 dshape(i, 2) = t_shape[t_dof[i]] * s_dshape(s_dof[i],0);
void SetSize(int nsize)
Change the logical size of the array, keep existing entries.
void Factor()
Factor the current DenseMatrix, *a.
void Mult(const real_t *x, real_t *y) const
Matrix vector multiplication with the inverse of dense matrix.
Data type dense matrix using column-major storage.
void SetSize(int s)
Change the size of the DenseMatrix to s x s.
static int VerifyNodal(int b_type)
Ensure that the BasisType of b_type nodal (satisfies the interpolation property).
int dof
Number of degrees of freedom.
static int VerifyClosed(int b_type)
Ensure that the BasisType of b_type is closed (has Quadrature1D points on the boundary).
const IntegrationRule & GetNodes() const
Get a const reference to the nodes of the element.
int GetDof() const
Returns the number of degrees of freedom in the finite element.
int order
Order/degree of the shape functions.
int dim
Dimension of reference space.
Describes the function space on each element.
H1_HexahedronElement(const int p, const int btype=BasisType::GaussLobatto)
Construct the H1_HexahedronElement of order p and BasisType btype.
virtual void CalcHessian(const IntegrationPoint &ip, DenseMatrix &Hessian) const
Evaluate the Hessians of all shape functions of a scalar finite element in reference space at the giv...
virtual void CalcShape(const IntegrationPoint &ip, Vector &shape) const
Evaluate the values of all shape functions of a scalar finite element in reference space at the given...
virtual void ProjectDelta(int vertex, Vector &dofs) const
Project a delta function centered on the given vertex in the local finite dimensional space represent...
virtual void CalcDShape(const IntegrationPoint &ip, DenseMatrix &dshape) const
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the gi...
virtual void CalcHessian(const IntegrationPoint &ip, DenseMatrix &Hessian) const
Evaluate the Hessians of all shape functions of a scalar finite element in reference space at the giv...
virtual void CalcShape(const IntegrationPoint &ip, Vector &shape) const
Evaluate the values of all shape functions of a scalar finite element in reference space at the given...
virtual void ProjectDelta(int vertex, Vector &dofs) const
Project a delta function centered on the given vertex in the local finite dimensional space represent...
virtual void CalcDShape(const IntegrationPoint &ip, DenseMatrix &dshape) const
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the gi...
H1_QuadrilateralElement(const int p, const int btype=BasisType::GaussLobatto)
Construct the H1_QuadrilateralElement of order p and BasisType btype.
virtual void CalcDShape(const IntegrationPoint &ip, DenseMatrix &dshape) const
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the gi...
H1_SegmentElement(const int p, const int btype=BasisType::GaussLobatto)
Construct the H1_SegmentElement of order p and BasisType btype.
virtual void CalcHessian(const IntegrationPoint &ip, DenseMatrix &Hessian) const
Evaluate the Hessians of all shape functions of a scalar finite element in reference space at the giv...
virtual void CalcShape(const IntegrationPoint &ip, Vector &shape) const
Evaluate the values of all shape functions of a scalar finite element in reference space at the given...
virtual void ProjectDelta(int vertex, Vector &dofs) const
Project a delta function centered on the given vertex in the local finite dimensional space represent...
virtual void CalcShape(const IntegrationPoint &ip, Vector &shape) const
Evaluate the values of all shape functions of a scalar finite element in reference space at the given...
H1_TetrahedronElement(const int p, const int btype=BasisType::GaussLobatto)
Construct the H1_TetrahedronElement of order p and BasisType btype.
virtual void CalcHessian(const IntegrationPoint &ip, DenseMatrix &ddshape) const
Evaluate the Hessians of all shape functions of a scalar finite element in reference space at the giv...
virtual void CalcDShape(const IntegrationPoint &ip, DenseMatrix &dshape) const
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the gi...
virtual void CalcShape(const IntegrationPoint &ip, Vector &shape) const
Evaluate the values of all shape functions of a scalar finite element in reference space at the given...
virtual void CalcHessian(const IntegrationPoint &ip, DenseMatrix &ddshape) const
Evaluate the Hessians of all shape functions of a scalar finite element in reference space at the giv...
H1_TriangleElement(const int p, const int btype=BasisType::GaussLobatto)
Construct the H1_TriangleElement of order p and BasisType btype.
virtual void CalcDShape(const IntegrationPoint &ip, DenseMatrix &dshape) const
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the gi...
virtual void CalcShape(const IntegrationPoint &ip, Vector &shape) const
Evaluate the values of all shape functions of a scalar finite element in reference space at the given...
H1_WedgeElement(const int p, const int btype=BasisType::GaussLobatto)
Construct the H1_WedgeElement of order p and BasisType btype.
virtual void CalcDShape(const IntegrationPoint &ip, DenseMatrix &dshape) const
Evaluate the gradients of all shape functions of a scalar finite element in reference space at the gi...
Class for integration point with weight.
void Set2(const real_t x1, const real_t x2)
void Set3(const real_t x1, const real_t x2, const real_t x3)
Class for an integration rule - an Array of IntegrationPoint.
IntegrationPoint & IntPoint(int i)
Returns a reference to the i-th integration point.
Class for standard nodal finite elements.
Array< int > lex_ordering
void Eval(const real_t x, Vector &u) const
Evaluate the basis functions at point x in [0,1].
static real_t CalcDelta(const int p, const real_t x)
Evaluate a representation of a Delta function at point x.
const real_t * ClosedPoints(const int p, const int btype=BasisType::GaussLobatto)
Get coordinates of a closed (GaussLegendre) set of points if degree p.
static void CalcBasis(const int p, const real_t x, real_t *u)
Evaluate the values of a hierarchical 1D basis at point x hierarchical = k-th basis function is degre...
void SetSize(int s)
Resize the vector to size s.
Linear1DFiniteElement SegmentFE
real_t u(const Vector &xvec)
MFEM_EXPORT Linear2DFiniteElement TriangleFE
real_t p(const Vector &x, real_t t)