MFEM v4.7.0
Finite element discretization library
|
Go to the source code of this file.
Namespaces | |
namespace | mfem |
Functions | |
ElementTransformation * | mfem::RefinedToCoarse (Mesh &coarse_mesh, const ElementTransformation &T, const IntegrationPoint &ip, IntegrationPoint &coarse_ip) |
real_t | mfem::LpNormLoop (real_t p, Coefficient &coeff, Mesh &mesh, const IntegrationRule *irs[]) |
real_t | mfem::LpNormLoop (real_t p, VectorCoefficient &coeff, Mesh &mesh, const IntegrationRule *irs[]) |
real_t | mfem::ComputeLpNorm (real_t p, Coefficient &coeff, Mesh &mesh, const IntegrationRule *irs[]) |
Compute the Lp norm of a function f. \( \| f \|_{Lp} = ( \int_\Omega | f |^p d\Omega)^{1/p} \). | |
real_t | mfem::ComputeLpNorm (real_t p, VectorCoefficient &coeff, Mesh &mesh, const IntegrationRule *irs[]) |
Compute the Lp norm of a vector function f = {f_i}_i=1...N. \( \| f \|_{Lp} = ( \sum_i \| f_i \|_{Lp}^p )^{1/p} \). | |
real_t | mfem::ComputeGlobalLpNorm (real_t p, Coefficient &coeff, ParMesh &pmesh, const IntegrationRule *irs[]) |
Compute the global Lp norm of a function f. \( \| f \|_{Lp} = ( \int_\Omega | f |^p d\Omega)^{1/p} \). | |
real_t | mfem::ComputeGlobalLpNorm (real_t p, VectorCoefficient &coeff, ParMesh &pmesh, const IntegrationRule *irs[]) |
Compute the global Lp norm of a vector function f = {f_i}_i=1...N. \( \| f \|_{Lp} = ( \sum_i \| f_i \|_{Lp}^p )^{1/p} \). | |