MFEM v4.7.0
Finite element discretization library
|
Operator that extracts Face degrees of freedom for L2 spaces. More...
#include <restriction.hpp>
Public Member Functions | |
L2FaceRestriction (const FiniteElementSpace &fes, const ElementDofOrdering f_ordering, const FaceType type, const L2FaceValues m=L2FaceValues::DoubleValued) | |
Constructs an L2FaceRestriction. | |
void | Mult (const Vector &x, Vector &y) const override |
Scatter the degrees of freedom, i.e. goes from L-Vector to face E-Vector. | |
void | AddMultTranspose (const Vector &x, Vector &y, const real_t a=1.0) const override |
Gather the degrees of freedom, i.e. goes from face E-Vector to L-Vector. | |
virtual void | FillI (SparseMatrix &mat, const bool keep_nbr_block=false) const |
Fill the I array of SparseMatrix corresponding to the sparsity pattern given by this L2FaceRestriction. | |
virtual void | FillJAndData (const Vector &fea_data, SparseMatrix &mat, const bool keep_nbr_block=false) const |
Fill the J and Data arrays of the SparseMatrix corresponding to the sparsity pattern given by this L2FaceRestriction, and the values of fea_data. | |
virtual void | AddFaceMatricesToElementMatrices (const Vector &fea_data, Vector &ea_data) const |
This methods adds the DG face matrices to the element matrices. | |
void | NormalDerivativeMult (const Vector &x, Vector &y) const override |
Scatter the degrees of freedom, i.e. goes from L-Vector to face E-Vector. | |
void | NormalDerivativeAddMultTranspose (const Vector &x, Vector &y) const override |
Add the face reference-normal derivative degrees of freedom in x to the element degrees of freedom in y. | |
void | SingleValuedConformingMult (const Vector &x, Vector &y) const |
Scatter the degrees of freedom, i.e. goes from L-Vector to face E-Vector. Should only be used with conforming faces and when: m == L2FacesValues::SingleValued. | |
virtual void | DoubleValuedConformingMult (const Vector &x, Vector &y) const |
Scatter the degrees of freedom, i.e. goes from L-Vector to face E-Vector. Should only be used with conforming faces and when: m == L2FacesValues::DoubleValued. | |
void | SingleValuedConformingAddMultTranspose (const Vector &x, Vector &y) const |
Gather the degrees of freedom, i.e. goes from face E-Vector to L-Vector. Should only be used with conforming faces and when: m == L2FacesValues::SingleValued. | |
void | DoubleValuedConformingAddMultTranspose (const Vector &x, Vector &y) const |
Gather the degrees of freedom, i.e. goes from face E-Vector to L-Vector. Should only be used with conforming faces and when: m == L2FacesValues::DoubleValued. | |
Public Member Functions inherited from mfem::FaceRestriction | |
FaceRestriction () | |
FaceRestriction (int h, int w) | |
virtual | ~FaceRestriction () |
virtual void | AddMultTransposeUnsigned (const Vector &x, Vector &y, const real_t a=1.0) const |
Add the face degrees of freedom x to the element degrees of freedom y ignoring the signs from DOF orientation. | |
virtual void | AddMultTransposeInPlace (Vector &x, Vector &y) const |
Add the face degrees of freedom x to the element degrees of freedom y. Perform the same computation as AddMultTranspose, but x is invalid after calling this method. | |
void | MultTranspose (const Vector &x, Vector &y) const override |
Set the face degrees of freedom in the element degrees of freedom y to the values given in x. | |
Public Member Functions inherited from mfem::Operator | |
void | InitTVectors (const Operator *Po, const Operator *Ri, const Operator *Pi, Vector &x, Vector &b, Vector &X, Vector &B) const |
Initializes memory for true vectors of linear system. | |
Operator (int s=0) | |
Construct a square Operator with given size s (default 0). | |
Operator (int h, int w) | |
Construct an Operator with the given height (output size) and width (input size). | |
int | Height () const |
Get the height (size of output) of the Operator. Synonym with NumRows(). | |
int | NumRows () const |
Get the number of rows (size of output) of the Operator. Synonym with Height(). | |
int | Width () const |
Get the width (size of input) of the Operator. Synonym with NumCols(). | |
int | NumCols () const |
Get the number of columns (size of input) of the Operator. Synonym with Width(). | |
virtual MemoryClass | GetMemoryClass () const |
Return the MemoryClass preferred by the Operator. | |
virtual void | AddMult (const Vector &x, Vector &y, const real_t a=1.0) const |
Operator application: y+=A(x) (default) or y+=a*A(x) . | |
virtual void | ArrayMult (const Array< const Vector * > &X, Array< Vector * > &Y) const |
Operator application on a matrix: Y=A(X) . | |
virtual void | ArrayMultTranspose (const Array< const Vector * > &X, Array< Vector * > &Y) const |
Action of the transpose operator on a matrix: Y=A^t(X) . | |
virtual void | ArrayAddMult (const Array< const Vector * > &X, Array< Vector * > &Y, const real_t a=1.0) const |
Operator application on a matrix: Y+=A(X) (default) or Y+=a*A(X) . | |
virtual void | ArrayAddMultTranspose (const Array< const Vector * > &X, Array< Vector * > &Y, const real_t a=1.0) const |
Operator transpose application on a matrix: Y+=A^t(X) (default) or Y+=a*A^t(X) . | |
virtual Operator & | GetGradient (const Vector &x) const |
Evaluate the gradient operator at the point x. The default behavior in class Operator is to generate an error. | |
virtual void | AssembleDiagonal (Vector &diag) const |
Computes the diagonal entries into diag. Typically, this operation only makes sense for linear Operators. In some cases, only an approximation of the diagonal is computed. | |
virtual const Operator * | GetProlongation () const |
Prolongation operator from linear algebra (linear system) vectors, to input vectors for the operator. NULL means identity. | |
virtual const Operator * | GetRestriction () const |
Restriction operator from input vectors for the operator to linear algebra (linear system) vectors. NULL means identity. | |
virtual const Operator * | GetOutputProlongation () const |
Prolongation operator from linear algebra (linear system) vectors, to output vectors for the operator. NULL means identity. | |
virtual const Operator * | GetOutputRestrictionTranspose () const |
Transpose of GetOutputRestriction, directly available in this form to facilitate matrix-free RAP-type operators. | |
virtual const Operator * | GetOutputRestriction () const |
Restriction operator from output vectors for the operator to linear algebra (linear system) vectors. NULL means identity. | |
void | FormLinearSystem (const Array< int > &ess_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B, int copy_interior=0) |
Form a constrained linear system using a matrix-free approach. | |
void | FormRectangularLinearSystem (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B) |
Form a column-constrained linear system using a matrix-free approach. | |
virtual void | RecoverFEMSolution (const Vector &X, const Vector &b, Vector &x) |
Reconstruct a solution vector x (e.g. a GridFunction) from the solution X of a constrained linear system obtained from Operator::FormLinearSystem() or Operator::FormRectangularLinearSystem(). | |
void | FormSystemOperator (const Array< int > &ess_tdof_list, Operator *&A) |
Return in A a parallel (on truedofs) version of this square operator. | |
void | FormRectangularSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Operator *&A) |
Return in A a parallel (on truedofs) version of this rectangular operator (including constraints). | |
void | FormDiscreteOperator (Operator *&A) |
Return in A a parallel (on truedofs) version of this rectangular operator. | |
void | PrintMatlab (std::ostream &out, int n, int m=0) const |
Prints operator with input size n and output size m in Matlab format. | |
virtual void | PrintMatlab (std::ostream &out) const |
Prints operator in Matlab format. | |
virtual | ~Operator () |
Virtual destructor. | |
Type | GetType () const |
Return the type ID of the Operator class. | |
Protected Member Functions | |
L2FaceRestriction (const FiniteElementSpace &fes, const ElementDofOrdering f_ordering, const FaceType type, const L2FaceValues m, bool build) | |
Constructs an L2FaceRestriction. | |
void | CheckFESpace () |
Verify that L2FaceRestriction is built from an L2 FESpace. | |
void | SetFaceDofsScatterIndices1 (const Mesh::FaceInformation &face, const int face_index) |
Set the scattering indices of elem1, and increment the offsets for the face described by the face. The ordering of the face dofs of elem1 is lexicographic relative to elem1. | |
void | PermuteAndSetFaceDofsScatterIndices2 (const Mesh::FaceInformation &face, const int face_index) |
Permute and set the scattering indices of elem2, and increment the offsets for the face described by the face. The permutation orders the dofs of elem2 lexicographically as the ones of elem1. | |
void | PermuteAndSetSharedFaceDofsScatterIndices2 (const Mesh::FaceInformation &face, const int face_index) |
Permute and set the scattering indices of elem2 for the shared face described by the face. The permutation orders the dofs of elem2 as the ones of elem1. | |
void | SetBoundaryDofsScatterIndices2 (const Mesh::FaceInformation &face, const int face_index) |
Set the scattering indices of elem2 for the boundary face described by the face. | |
void | SetFaceDofsGatherIndices1 (const Mesh::FaceInformation &face, const int face_index) |
Set the gathering indices of elem1 for the interior face described by the face. | |
void | PermuteAndSetFaceDofsGatherIndices2 (const Mesh::FaceInformation &face, const int face_index) |
Permute and set the gathering indices of elem2 for the interior face described by the face. The permutation orders the dofs of elem2 as the ones of elem1. | |
Protected Member Functions inherited from mfem::Operator | |
void | FormConstrainedSystemOperator (const Array< int > &ess_tdof_list, ConstrainedOperator *&Aout) |
see FormSystemOperator() | |
void | FormRectangularConstrainedSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, RectangularConstrainedOperator *&Aout) |
see FormRectangularSystemOperator() | |
Operator * | SetupRAP (const Operator *Pi, const Operator *Po) |
Returns RAP Operator of this, using input/output Prolongation matrices Pi corresponds to "P", Po corresponds to "Rt". | |
Protected Attributes | |
const FiniteElementSpace & | fes |
const ElementDofOrdering | ordering |
const int | nf |
const int | ne |
const int | vdim |
const bool | byvdim |
const int | face_dofs |
const int | elem_dofs |
const int | nfdofs |
const int | ndofs |
const FaceType | type |
const L2FaceValues | m |
Array< int > | scatter_indices1 |
Array< int > | scatter_indices2 |
Array< int > | gather_offsets |
Array< int > | gather_indices |
std::unique_ptr< L2NormalDerivativeFaceRestriction > | normal_deriv_restr |
Array< int > | face_map |
Protected Attributes inherited from mfem::Operator | |
int | height |
Dimension of the output / number of rows in the matrix. | |
int | width |
Dimension of the input / number of columns in the matrix. | |
Additional Inherited Members | |
Public Types inherited from mfem::Operator | |
enum | DiagonalPolicy { DIAG_ZERO , DIAG_ONE , DIAG_KEEP } |
Defines operator diagonal policy upon elimination of rows and/or columns. More... | |
enum | Type { ANY_TYPE , MFEM_SPARSEMAT , Hypre_ParCSR , PETSC_MATAIJ , PETSC_MATIS , PETSC_MATSHELL , PETSC_MATNEST , PETSC_MATHYPRE , PETSC_MATGENERIC , Complex_Operator , MFEM_ComplexSparseMat , Complex_Hypre_ParCSR , Complex_DenseMat , MFEM_Block_Matrix , MFEM_Block_Operator } |
Enumeration defining IDs for some classes derived from Operator. More... | |
Operator that extracts Face degrees of freedom for L2 spaces.
Objects of this type are typically created and owned by FiniteElementSpace objects, see FiniteElementSpace::GetFaceRestriction().
Definition at line 406 of file restriction.hpp.
|
protected |
Constructs an L2FaceRestriction.
[in] | fes | The FiniteElementSpace on which this operates |
[in] | f_ordering | Request a specific face dof ordering |
[in] | type | Request internal or boundary faces dofs |
[in] | m | Request the face dofs for elem1, or both elem1 and elem2 |
[in] | build | Request the NCL2FaceRestriction to compute the scatter/gather indices. False should only be used when inheriting from L2FaceRestriction. |
Definition at line 928 of file restriction.cpp.
mfem::L2FaceRestriction::L2FaceRestriction | ( | const FiniteElementSpace & | fes, |
const ElementDofOrdering | f_ordering, | ||
const FaceType | type, | ||
const L2FaceValues | m = L2FaceValues::DoubleValued ) |
Constructs an L2FaceRestriction.
[in] | fes | The FiniteElementSpace on which this operates |
[in] | f_ordering | Request a specific face dof ordering |
[in] | type | Request internal or boundary faces dofs |
[in] | m | Request the face dofs for elem1, or both elem1 and elem2 |
Definition at line 962 of file restriction.cpp.
|
virtual |
This methods adds the DG face matrices to the element matrices.
[in] | fea_data | The dense matrices representing the local operators on each face. The format is: face_dofs x face_dofs x 2 x nf On each face the first and second local matrices correspond to the contributions of elem1 and elem2 on themselves respectively. |
[in,out] | ea_data | The dense matrices representing the element local contributions for each element to which will be added the face contributions. The format is: dofs x dofs x ne, where dofs is the number of dofs per element and ne the number of elements. |
Reimplemented in mfem::NCL2FaceRestriction.
Definition at line 1162 of file restriction.cpp.
|
overridevirtual |
Gather the degrees of freedom, i.e. goes from face E-Vector to L-Vector.
[in] | x | The face E-Vector degrees of freedom with the given format: if L2FacesValues::DoubleValued (face_dofs x vdim x 2 x nf) if L2FacesValues::SingleValued (face_dofs x vdim x nf) where nf is the number of interior or boundary faces requested by type in the constructor. The face_dofs should be ordered according to the given ElementDofOrdering |
[in,out] | y | The L-vector degrees of freedom. |
[in] | a | Scalar coefficient for addition. |
Implements mfem::FaceRestriction.
Reimplemented in mfem::NCL2FaceRestriction, and mfem::ParNCL2FaceRestriction.
Definition at line 1100 of file restriction.cpp.
|
protected |
Verify that L2FaceRestriction is built from an L2 FESpace.
Definition at line 1222 of file restriction.cpp.
void mfem::L2FaceRestriction::DoubleValuedConformingAddMultTranspose | ( | const Vector & | x, |
Vector & | y ) const |
Gather the degrees of freedom, i.e. goes from face E-Vector to L-Vector. Should only be used with conforming faces and when: m == L2FacesValues::DoubleValued.
[in] | x | The face E-Vector degrees of freedom with the given format: face_dofs x vdim x 2 x nf where nf is the number of interior or boundary faces requested by type in the constructor. The face_dofs should be ordered according to the given ElementDofOrdering |
[in,out] | y | The L-vector degrees of freedom. |
Definition at line 1067 of file restriction.cpp.
|
virtual |
Scatter the degrees of freedom, i.e. goes from L-Vector to face E-Vector. Should only be used with conforming faces and when: m == L2FacesValues::DoubleValued.
[in] | x | The L-vector degrees of freedom. |
[out] | y | The face E-Vector degrees of freedom with the given format: face_dofs x vdim x 2 x nf where nf is the number of interior or boundary faces requested by type in the constructor. The face_dofs are ordered according to the given ElementDofOrdering. |
Reimplemented in mfem::ParL2FaceRestriction.
Definition at line 995 of file restriction.cpp.
|
virtual |
Fill the I array of SparseMatrix corresponding to the sparsity pattern given by this L2FaceRestriction.
[in,out] | mat | The sparse matrix for which we want to initialize the row offsets. |
[in] | keep_nbr_block | When set to true the SparseMatrix will include the rows (in addition to the columns) corresponding to face-neighbor dofs. The default behavior is to disregard those rows. |
Reimplemented in mfem::NCL2FaceRestriction, mfem::ParL2FaceRestriction, and mfem::ParNCL2FaceRestriction.
Definition at line 1115 of file restriction.cpp.
|
virtual |
Fill the J and Data arrays of the SparseMatrix corresponding to the sparsity pattern given by this L2FaceRestriction, and the values of fea_data.
[in] | fea_data | The dense matrices representing the local operators on each face. The format is: face_dofs x face_dofs x 2 x nf On each face the first local matrix corresponds to the contribution of elem1 on elem2, and the second to the contribution of elem2 on elem1. |
[in,out] | mat | The sparse matrix that is getting filled. |
[in] | keep_nbr_block | When set to true the SparseMatrix will include the rows (in addition to the columns) corresponding to face-neighbor dofs. The default behavior is to disregard those rows. |
Reimplemented in mfem::NCL2FaceRestriction, mfem::ParL2FaceRestriction, and mfem::ParNCL2FaceRestriction.
Definition at line 1131 of file restriction.cpp.
Scatter the degrees of freedom, i.e. goes from L-Vector to face E-Vector.
[in] | x | The L-vector degrees of freedom. |
[out] | y | The face E-Vector degrees of freedom with the given format: if L2FacesValues::DoubleValued (face_dofs x vdim x 2 x nf) if L2FacesValues::SingleValued (face_dofs x vdim x nf) where nf is the number of interior or boundary faces requested by type in the constructor. The face_dofs are ordered according to the given ElementDofOrdering. |
Implements mfem::FaceRestriction.
Reimplemented in mfem::NCL2FaceRestriction, mfem::ParL2FaceRestriction, and mfem::ParNCL2FaceRestriction.
Definition at line 1026 of file restriction.cpp.
|
overridevirtual |
Add the face reference-normal derivative degrees of freedom in x to the element degrees of freedom in y.
see NormalDerivativeMult.
[in] | x | The degrees of freedom of the face reference-normal derivative. Is E-vector like. |
[in,out] | y | The L-vector degrees of freedom. |
Reimplemented from mfem::FaceRestriction.
Definition at line 1495 of file restriction.cpp.
|
overridevirtual |
Scatter the degrees of freedom, i.e. goes from L-Vector to face E-Vector.
[in] | x | The L-vector degrees of freedom. |
[out] | y | The face E-Vector degrees of freedom with the given format: (face_dofs x vdim x 2 x nf) where nf is the number of interior or boundary faces requested by type in the constructor. The face_dofs are ordered according to the given ElementDofOrdering. |
Reimplemented from mfem::FaceRestriction.
Definition at line 1489 of file restriction.cpp.
|
protected |
Permute and set the gathering indices of elem2 for the interior face described by the face. The permutation orders the dofs of elem2 as the ones of elem1.
Note: This function modifies the offsets.
[in] | face | The face information of the current face. |
[in] | face_index | The interior/boundary face index. |
Definition at line 1459 of file restriction.cpp.
|
protected |
Permute and set the scattering indices of elem2, and increment the offsets for the face described by the face. The permutation orders the dofs of elem2 lexicographically as the ones of elem1.
[in] | face | The face information of the current face. |
[in] | face_index | The interior/boundary face index. |
Definition at line 1362 of file restriction.cpp.
|
protected |
Permute and set the scattering indices of elem2 for the shared face described by the face. The permutation orders the dofs of elem2 as the ones of elem1.
[in] | face | The face information of the current face. |
[in] | face_index | The interior/boundary face index. |
Definition at line 1391 of file restriction.cpp.
|
protected |
Set the scattering indices of elem2 for the boundary face described by the face.
[in] | face | The face information of the current face. |
[in] | face_index | The interior/boundary face index. |
Definition at line 1423 of file restriction.cpp.
|
protected |
Set the gathering indices of elem1 for the interior face described by the face.
Note: This function modifies the offsets.
[in] | face | The face information of the current face. |
[in] | face_index | The interior/boundary face index. |
Definition at line 1437 of file restriction.cpp.
|
protected |
Set the scattering indices of elem1, and increment the offsets for the face described by the face. The ordering of the face dofs of elem1 is lexicographic relative to elem1.
[in] | face | The face information of the current face. |
[in] | face_index | The interior/boundary face index. |
Definition at line 1340 of file restriction.cpp.
void mfem::L2FaceRestriction::SingleValuedConformingAddMultTranspose | ( | const Vector & | x, |
Vector & | y ) const |
Gather the degrees of freedom, i.e. goes from face E-Vector to L-Vector. Should only be used with conforming faces and when: m == L2FacesValues::SingleValued.
[in] | x | The face E-Vector degrees of freedom with the given format: face_dofs x vdim x nf where nf is the number of interior or boundary faces requested by type in the constructor. The face_dofs should be ordered according to the given ElementDofOrdering |
[in,out] | y | The L-vector degrees of freedom. |
Definition at line 1039 of file restriction.cpp.
Scatter the degrees of freedom, i.e. goes from L-Vector to face E-Vector. Should only be used with conforming faces and when: m == L2FacesValues::SingleValued.
[in] | x | The L-vector degrees of freedom. |
[out] | y | The face E-Vector degrees of freedom with the given format: face_dofs x vdim x nf where nf is the number of interior or boundary faces requested by type in the constructor. The face_dofs are ordered according to the given ElementDofOrdering. |
Definition at line 969 of file restriction.cpp.
|
protected |
Definition at line 414 of file restriction.hpp.
|
protected |
Definition at line 416 of file restriction.hpp.
|
protected |
Definition at line 415 of file restriction.hpp.
|
mutableprotected |
Definition at line 572 of file restriction.hpp.
|
protected |
Definition at line 409 of file restriction.hpp.
|
protected |
Definition at line 424 of file restriction.hpp.
|
protected |
Definition at line 423 of file restriction.hpp.
|
protected |
Definition at line 420 of file restriction.hpp.
|
protected |
Definition at line 418 of file restriction.hpp.
|
protected |
Definition at line 412 of file restriction.hpp.
|
protected |
Definition at line 411 of file restriction.hpp.
|
protected |
Definition at line 417 of file restriction.hpp.
|
mutableprotected |
Definition at line 425 of file restriction.hpp.
|
protected |
Definition at line 410 of file restriction.hpp.
|
protected |
Definition at line 421 of file restriction.hpp.
|
protected |
Definition at line 422 of file restriction.hpp.
|
protected |
Definition at line 419 of file restriction.hpp.
|
protected |
Definition at line 413 of file restriction.hpp.