12 #include "../tmop.hpp" 14 #include "../../general/forall.hpp" 15 #include "../../linalg/kernels.hpp" 16 #include "../../linalg/dinvariants.hpp" 21 using Args = kernels::InvariantsEvaluator2D::Buffers;
23 static MFEM_HOST_DEVICE
inline 24 void EvalP_001(
const double *Jpt,
double *P)
27 kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).dI1(dI1));
31 static MFEM_HOST_DEVICE
inline 32 void EvalP_002(
const double *Jpt,
double *P)
34 double dI1b[4], dI2b[4];
35 kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).dI1b(dI1b).dI2b(dI2b));
39 static MFEM_HOST_DEVICE
inline 40 void EvalP_007(
const double *Jpt,
double *P)
42 double dI1[4], dI2[4], dI2b[4];
43 kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).dI1(dI1)
44 .dI2(dI2).dI2b(dI2b));
45 const double I2 = ie.Get_I2();
47 -ie.Get_I1() / (I2*I2), ie.Get_dI2(), P);
51 static MFEM_HOST_DEVICE
inline 52 void EvalP_056(
const double *Jpt,
double *P)
55 kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).dI2b(dI2b));
56 const double I2b = ie.Get_I2b();
57 kernels::Set(2,2, 0.5 * (1.0 - 1.0 / (I2b * I2b)), ie.Get_dI2b(), P);
60 static MFEM_HOST_DEVICE
inline 61 void EvalP_077(
const double *Jpt,
double *P)
63 double dI2[4], dI2b[4];
64 kernels::InvariantsEvaluator2D ie(
Args().
67 const double I2 = ie.Get_I2();
68 kernels::Set(2,2, 0.5 * (1.0 - 1.0 / (I2 * I2)), ie.Get_dI2(), P);
72 static MFEM_HOST_DEVICE
inline 73 void EvalP_080(
const double *Jpt,
const double *w,
double *P)
75 double dI1b[4], dI2[4], dI2b[4];
76 kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).
77 dI1b(dI1b).dI2(dI2).dI2b(dI2b));
81 const double I2 = ie.Get_I2();
82 kernels::Add(2,2, w[1] * 0.5 * (1.0 - 1.0 / (I2 * I2)), ie.Get_dI2(), P);
86 static MFEM_HOST_DEVICE
inline 87 void EvalP_094(
const double *Jpt,
const double *w,
double *P)
89 double dI1b[4], dI2b[4];
90 kernels::InvariantsEvaluator2D ie(
Args().J(Jpt).
91 dI1b(dI1b).dI2b(dI2b));
95 const double I2b = ie.Get_I2b();
96 kernels::Add(2,2, w[1] * 0.5 * (1.0 - 1.0 / (I2b * I2b)), ie.Get_dI2b(), P);
100 const double metric_normal,
113 MFEM_VERIFY(mid == 1 || mid == 2 || mid == 7 || mid == 77
114 || mid == 80 || mid == 94,
115 "2D metric not yet implemented!");
117 constexpr
int DIM = 2;
118 constexpr
int NBZ = 1;
120 const int D1D = T_D1D ? T_D1D : d1d;
121 const int Q1D = T_Q1D ? T_Q1D : q1d;
130 const double *metric_data = metric_param.
Read();
134 constexpr
int NBZ = 1;
135 constexpr
int MQ1 = T_Q1D ? T_Q1D : T_MAX;
136 constexpr
int MD1 = T_D1D ? T_D1D : T_MAX;
137 const int D1D = T_D1D ? T_D1D : d1d;
138 const int Q1D = T_Q1D ? T_Q1D : q1d;
140 MFEM_SHARED
double BG[2][MQ1*MD1];
141 MFEM_SHARED
double XY[2][NBZ][MD1*MD1];
142 MFEM_SHARED
double DQ[4][NBZ][MD1*MQ1];
143 MFEM_SHARED
double QQ[4][NBZ][MQ1*MQ1];
145 kernels::internal::LoadX<MD1,NBZ>(e,D1D,X,XY);
146 kernels::internal::LoadBG<MD1,MQ1>(D1D,Q1D,
b,g,BG);
148 kernels::internal::GradX<MD1,MQ1,NBZ>(D1D,Q1D,BG,XY,DQ);
149 kernels::internal::GradY<MD1,MQ1,NBZ>(D1D,Q1D,BG,DQ,QQ);
151 MFEM_FOREACH_THREAD(qy,y,Q1D)
153 MFEM_FOREACH_THREAD(qx,x,Q1D)
155 const double *Jtr = &J(0,0,qx,qy,e);
156 const double detJtr = kernels::Det<2>(Jtr);
157 const double weight = metric_normal * W(qx,qy) * detJtr;
161 kernels::CalcInverse<2>(Jtr, Jrt);
165 kernels::internal::PullGrad<MQ1,NBZ>(Q1D,qx,qy,QQ,Jpr);
173 if (mid == 1) { EvalP_001(Jpt, P); }
174 if (mid == 2) { EvalP_002(Jpt, P); }
175 if (mid == 7) { EvalP_007(Jpt, P); }
176 if (mid == 56) { EvalP_056(Jpt, P); }
177 if (mid == 77) { EvalP_077(Jpt, P); }
178 if (mid == 80) { EvalP_080(Jpt, metric_data, P); }
179 if (mid == 94) { EvalP_094(Jpt, metric_data, P); }
180 for (
int i = 0; i < 4; i++) { P[i] *= weight; }
185 kernels::internal::PushGrad<MQ1,NBZ>(Q1D,qx,qy,A,QQ);
189 kernels::internal::LoadBGt<MD1,MQ1>(D1D,Q1D,
b,g,BG);
190 kernels::internal::GradYt<MD1,MQ1,NBZ>(D1D,Q1D,BG,QQ,DQ);
191 kernels::internal::GradXt<MD1,MQ1,NBZ>(D1D,Q1D,BG,DQ,Y,e);
199 const int D1D =
PA.maps->ndof;
200 const int Q1D =
PA.maps->nqpt;
201 const int id = (D1D << 4 ) | Q1D;
209 if (
auto m = dynamic_cast<TMOP_Combo_QualityMetric *>(
metric))
214 MFEM_LAUNCH_TMOP_KERNEL(AddMultPA_Kernel_2D,
id,mn,mp,M,N,J,W,B,G,X,Y);
const T * Read(bool on_dev=true) const
Shortcut for mfem::Read(a.GetMemory(), a.Size(), on_dev).
MFEM_HOST_DEVICE void MultABt(const int Aheight, const int Awidth, const int Bheight, const TA *Adata, const TB *Bdata, TC *ABtdata)
Multiply a matrix of size Aheight x Awidth and data Adata with the transpose of a matrix of size Bhei...
struct mfem::TMOP_Integrator::@23 PA
TMOP_QualityMetric * metric
MFEM_HOST_DEVICE void Add(const int height, const int width, const TALPHA alpha, const TA *Adata, const TB *Bdata, TC *Cdata)
Compute C = A + alpha*B, where the matrices A, B and C are of size height x width with data Adata...
virtual const double * Read(bool on_dev=true) const
Shortcut for mfem::Read(vec.GetMemory(), vec.Size(), on_dev).
const double * Read(bool on_dev=true) const
Shortcut for mfem::Read( GetMemory(), TotalSize(), on_dev).
MFEM_REGISTER_TMOP_KERNELS(void, DatcSize, const int NE, const int ncomp, const int sizeidx, const double input_min_size, const DenseMatrix &w_, const Array< double > &b_, const Vector &x_, const Vector &nc_reduce, DenseTensor &j_, const int d1d, const int q1d)
virtual int Id() const
Return the metric ID.
void forall_2D_batch(int N, int X, int Y, int BZ, lambda &&body)
MFEM_HOST_DEVICE void Mult(const int height, const int width, const TA *data, const TX *x, TY *y)
Matrix vector multiplication: y = A x, where the matrix A is of size height x width with given data...
virtual double * ReadWrite(bool on_dev=true)
Shortcut for mfem::ReadWrite(vec.GetMemory(), vec.Size(), on_dev).
kernels::InvariantsEvaluator2D::Buffers Args
MFEM_HOST_DEVICE void Set(const int height, const int width, const double alpha, const TA *Adata, TB *Bdata)
Compute B = alpha*A, where the matrices A and B are of size height x width with data Adata and Bdata...
MFEM_HOST_DEVICE DeviceTensor< sizeof...(Dims), T > Reshape(T *ptr, Dims... dims)
Wrap a pointer as a DeviceTensor with automatically deduced template parameters.
void AddMultPA_2D(const Vector &, Vector &) const
Rank 3 tensor (array of matrices)