MFEM  v4.6.0
Finite element discretization library
tmop_pa_p2.cpp
Go to the documentation of this file.
1 // Copyright (c) 2010-2023, Lawrence Livermore National Security, LLC. Produced
2 // at the Lawrence Livermore National Laboratory. All Rights reserved. See files
3 // LICENSE and NOTICE for details. LLNL-CODE-806117.
4 //
5 // This file is part of the MFEM library. For more information and source code
6 // availability visit https://mfem.org.
7 //
8 // MFEM is free software; you can redistribute it and/or modify it under the
9 // terms of the BSD-3 license. We welcome feedback and contributions, see file
10 // CONTRIBUTING.md for details.
11 
12 #include "../tmop.hpp"
13 #include "tmop_pa.hpp"
14 #include "../../general/forall.hpp"
15 #include "../../linalg/kernels.hpp"
16 #include "../../linalg/dinvariants.hpp"
17 
18 namespace mfem
19 {
20 
21 using Args = kernels::InvariantsEvaluator2D::Buffers;
22 
23 static MFEM_HOST_DEVICE inline
24 void EvalP_001(const double *Jpt, double *P)
25 {
26  double dI1[4];
27  kernels::InvariantsEvaluator2D ie(Args().J(Jpt).dI1(dI1));
28  kernels::Set(2,2, 1.0, ie.Get_dI1(), P);
29 }
30 
31 static MFEM_HOST_DEVICE inline
32 void EvalP_002(const double *Jpt, double *P)
33 {
34  double dI1b[4], dI2b[4];
35  kernels::InvariantsEvaluator2D ie(Args().J(Jpt).dI1b(dI1b).dI2b(dI2b));
36  kernels::Set(2,2, 0.5, ie.Get_dI1b(), P);
37 }
38 
39 static MFEM_HOST_DEVICE inline
40 void EvalP_007(const double *Jpt, double *P)
41 {
42  double dI1[4], dI2[4], dI2b[4];
43  kernels::InvariantsEvaluator2D ie(Args().J(Jpt).dI1(dI1)
44  .dI2(dI2).dI2b(dI2b));
45  const double I2 = ie.Get_I2();
46  kernels::Add(2,2, 1.0 + 1.0 / I2, ie.Get_dI1(),
47  -ie.Get_I1() / (I2*I2), ie.Get_dI2(), P);
48 }
49 
50 // P_56 = 0.5*(1 - 1/I2b^2)*dI2b.
51 static MFEM_HOST_DEVICE inline
52 void EvalP_056(const double *Jpt, double *P)
53 {
54  double dI2b[4];
55  kernels::InvariantsEvaluator2D ie(Args().J(Jpt).dI2b(dI2b));
56  const double I2b = ie.Get_I2b();
57  kernels::Set(2,2, 0.5 * (1.0 - 1.0 / (I2b * I2b)), ie.Get_dI2b(), P);
58 }
59 
60 static MFEM_HOST_DEVICE inline
61 void EvalP_077(const double *Jpt, double *P)
62 {
63  double dI2[4], dI2b[4];
64  kernels::InvariantsEvaluator2D ie(Args().
65  J(Jpt).
66  dI2(dI2).dI2b(dI2b));
67  const double I2 = ie.Get_I2();
68  kernels::Set(2,2, 0.5 * (1.0 - 1.0 / (I2 * I2)), ie.Get_dI2(), P);
69 }
70 
71 // P_80 = w0 P_2 + w1 P_77.
72 static MFEM_HOST_DEVICE inline
73 void EvalP_080(const double *Jpt, const double *w, double *P)
74 {
75  double dI1b[4], dI2[4], dI2b[4];
76  kernels::InvariantsEvaluator2D ie(Args().J(Jpt).
77  dI1b(dI1b).dI2(dI2).dI2b(dI2b));
78 
79  kernels::Set(2,2, w[0] * 0.5, ie.Get_dI1b(), P);
80 
81  const double I2 = ie.Get_I2();
82  kernels::Add(2,2, w[1] * 0.5 * (1.0 - 1.0 / (I2 * I2)), ie.Get_dI2(), P);
83 }
84 
85 // P_94 = w0 P_2 + w1 P_56.
86 static MFEM_HOST_DEVICE inline
87 void EvalP_094(const double *Jpt, const double *w, double *P)
88 {
89  double dI1b[4], dI2b[4];
90  kernels::InvariantsEvaluator2D ie(Args().J(Jpt).
91  dI1b(dI1b).dI2b(dI2b));
92 
93  kernels::Set(2,2, w[0] * 0.5, ie.Get_dI1b(), P);
94 
95  const double I2b = ie.Get_I2b();
96  kernels::Add(2,2, w[1] * 0.5 * (1.0 - 1.0 / (I2b * I2b)), ie.Get_dI2b(), P);
97 }
98 
99 MFEM_REGISTER_TMOP_KERNELS(void, AddMultPA_Kernel_2D,
100  const double metric_normal,
101  const Array<double> &metric_param,
102  const int mid,
103  const int NE,
104  const DenseTensor &j_,
105  const Array<double> &w_,
106  const Array<double> &b_,
107  const Array<double> &g_,
108  const Vector &x_,
109  Vector &y_,
110  const int d1d,
111  const int q1d)
112 {
113  MFEM_VERIFY(mid == 1 || mid == 2 || mid == 7 || mid == 77
114  || mid == 80 || mid == 94,
115  "2D metric not yet implemented!");
116 
117  constexpr int DIM = 2;
118  constexpr int NBZ = 1;
119 
120  const int D1D = T_D1D ? T_D1D : d1d;
121  const int Q1D = T_Q1D ? T_Q1D : q1d;
122 
123  const auto J = Reshape(j_.Read(), DIM, DIM, Q1D, Q1D, NE);
124  const auto W = Reshape(w_.Read(), Q1D, Q1D);
125  const auto b = Reshape(b_.Read(), Q1D, D1D);
126  const auto g = Reshape(g_.Read(), Q1D, D1D);
127  auto X = Reshape(x_.Read(), D1D, D1D, DIM, NE);
128  auto Y = Reshape(y_.ReadWrite(), D1D, D1D, DIM, NE);
129 
130  const double *metric_data = metric_param.Read();
131 
132  mfem::forall_2D_batch(NE, Q1D, Q1D, NBZ, [=] MFEM_HOST_DEVICE (int e)
133  {
134  constexpr int NBZ = 1;
135  constexpr int MQ1 = T_Q1D ? T_Q1D : T_MAX;
136  constexpr int MD1 = T_D1D ? T_D1D : T_MAX;
137  const int D1D = T_D1D ? T_D1D : d1d;
138  const int Q1D = T_Q1D ? T_Q1D : q1d;
139 
140  MFEM_SHARED double BG[2][MQ1*MD1];
141  MFEM_SHARED double XY[2][NBZ][MD1*MD1];
142  MFEM_SHARED double DQ[4][NBZ][MD1*MQ1];
143  MFEM_SHARED double QQ[4][NBZ][MQ1*MQ1];
144 
145  kernels::internal::LoadX<MD1,NBZ>(e,D1D,X,XY);
146  kernels::internal::LoadBG<MD1,MQ1>(D1D,Q1D,b,g,BG);
147 
148  kernels::internal::GradX<MD1,MQ1,NBZ>(D1D,Q1D,BG,XY,DQ);
149  kernels::internal::GradY<MD1,MQ1,NBZ>(D1D,Q1D,BG,DQ,QQ);
150 
151  MFEM_FOREACH_THREAD(qy,y,Q1D)
152  {
153  MFEM_FOREACH_THREAD(qx,x,Q1D)
154  {
155  const double *Jtr = &J(0,0,qx,qy,e);
156  const double detJtr = kernels::Det<2>(Jtr);
157  const double weight = metric_normal * W(qx,qy) * detJtr;
158 
159  // Jrt = Jtr^{-1}
160  double Jrt[4];
161  kernels::CalcInverse<2>(Jtr, Jrt);
162 
163  // Jpr = X{^T}.DSh
164  double Jpr[4];
165  kernels::internal::PullGrad<MQ1,NBZ>(Q1D,qx,qy,QQ,Jpr);
166 
167  // Jpt = X{^T}.DS = (X{^T}.DSh).Jrt = Jpr.Jrt
168  double Jpt[4];
169  kernels::Mult(2,2,2, Jpr, Jrt, Jpt);
170 
171  // metric->EvalP(Jpt, P);
172  double P[4];
173  if (mid == 1) { EvalP_001(Jpt, P); }
174  if (mid == 2) { EvalP_002(Jpt, P); }
175  if (mid == 7) { EvalP_007(Jpt, P); }
176  if (mid == 56) { EvalP_056(Jpt, P); }
177  if (mid == 77) { EvalP_077(Jpt, P); }
178  if (mid == 80) { EvalP_080(Jpt, metric_data, P); }
179  if (mid == 94) { EvalP_094(Jpt, metric_data, P); }
180  for (int i = 0; i < 4; i++) { P[i] *= weight; }
181 
182  // PMatO += DS . P^t += DSh . (Jrt . P^t)
183  double A[4];
184  kernels::MultABt(2,2,2, Jrt, P, A);
185  kernels::internal::PushGrad<MQ1,NBZ>(Q1D,qx,qy,A,QQ);
186  }
187  }
188  MFEM_SYNC_THREAD;
189  kernels::internal::LoadBGt<MD1,MQ1>(D1D,Q1D,b,g,BG);
190  kernels::internal::GradYt<MD1,MQ1,NBZ>(D1D,Q1D,BG,QQ,DQ);
191  kernels::internal::GradXt<MD1,MQ1,NBZ>(D1D,Q1D,BG,DQ,Y,e);
192  });
193 }
194 
196 {
197  const int N = PA.ne;
198  const int M = metric->Id();
199  const int D1D = PA.maps->ndof;
200  const int Q1D = PA.maps->nqpt;
201  const int id = (D1D << 4 ) | Q1D;
202  const DenseTensor &J = PA.Jtr;
203  const Array<double> &W = PA.ir->GetWeights();
204  const Array<double> &B = PA.maps->B;
205  const Array<double> &G = PA.maps->G;
206  const double mn = metric_normal;
207 
208  Array<double> mp;
209  if (auto m = dynamic_cast<TMOP_Combo_QualityMetric *>(metric))
210  {
211  m->GetWeights(mp);
212  }
213 
214  MFEM_LAUNCH_TMOP_KERNEL(AddMultPA_Kernel_2D,id,mn,mp,M,N,J,W,B,G,X,Y);
215 }
216 
217 } // namespace mfem
const T * Read(bool on_dev=true) const
Shortcut for mfem::Read(a.GetMemory(), a.Size(), on_dev).
Definition: array.hpp:307
MFEM_HOST_DEVICE void MultABt(const int Aheight, const int Awidth, const int Bheight, const TA *Adata, const TB *Bdata, TC *ABtdata)
Multiply a matrix of size Aheight x Awidth and data Adata with the transpose of a matrix of size Bhei...
Definition: kernels.hpp:363
struct mfem::TMOP_Integrator::@23 PA
TMOP_QualityMetric * metric
Definition: tmop.hpp:1740
MFEM_HOST_DEVICE void Add(const int height, const int width, const TALPHA alpha, const TA *Adata, const TB *Bdata, TC *Cdata)
Compute C = A + alpha*B, where the matrices A, B and C are of size height x width with data Adata...
Definition: kernels.hpp:266
virtual const double * Read(bool on_dev=true) const
Shortcut for mfem::Read(vec.GetMemory(), vec.Size(), on_dev).
Definition: vector.hpp:453
constexpr int DIM
const double * Read(bool on_dev=true) const
Shortcut for mfem::Read( GetMemory(), TotalSize(), on_dev).
Definition: densemat.hpp:1230
MFEM_REGISTER_TMOP_KERNELS(void, DatcSize, const int NE, const int ncomp, const int sizeidx, const double input_min_size, const DenseMatrix &w_, const Array< double > &b_, const Vector &x_, const Vector &nc_reduce, DenseTensor &j_, const int d1d, const int q1d)
Definition: tmop_pa_da3.cpp:20
virtual int Id() const
Return the metric ID.
Definition: tmop.hpp:78
double b
Definition: lissajous.cpp:42
void forall_2D_batch(int N, int X, int Y, int BZ, lambda &&body)
Definition: forall.hpp:757
MFEM_HOST_DEVICE void Mult(const int height, const int width, const TA *data, const TX *x, TY *y)
Matrix vector multiplication: y = A x, where the matrix A is of size height x width with given data...
Definition: kernels.hpp:163
virtual double * ReadWrite(bool on_dev=true)
Shortcut for mfem::ReadWrite(vec.GetMemory(), vec.Size(), on_dev).
Definition: vector.hpp:469
kernels::InvariantsEvaluator2D::Buffers Args
Definition: tmop_pa_h2s.cpp:21
MFEM_HOST_DEVICE void Set(const int height, const int width, const double alpha, const TA *Adata, TB *Bdata)
Compute B = alpha*A, where the matrices A and B are of size height x width with data Adata and Bdata...
Definition: kernels.hpp:326
Vector data type.
Definition: vector.hpp:58
MFEM_HOST_DEVICE DeviceTensor< sizeof...(Dims), T > Reshape(T *ptr, Dims... dims)
Wrap a pointer as a DeviceTensor with automatically deduced template parameters.
Definition: dtensor.hpp:131
void AddMultPA_2D(const Vector &, Vector &) const
Definition: tmop_pa_p2.cpp:195
Rank 3 tensor (array of matrices)
Definition: densemat.hpp:1096