mfem::AbstractErrorEstimator | Base class for all error estimators |
mfem::ErrorEstimator | Base class for all element based error estimators |
mfem::AnisotropicErrorEstimator | Base class for all error estimators that compute one non-negative real (double) number and an anisotropic flag for every element in the Mesh |
mfem::TMOPRefinerEstimator | |
mfem::ZienkiewiczZhuEstimator | Implements the Zienkiewicz-Zhu error estimation procedure |
mfem::KellyErrorEstimator | Fast error indication strategy for smooth scalar parallel problems |
mfem::L2ZienkiewiczZhuEstimator | Implements the Zienkiewicz-Zhu error estimation procedure where the flux averaging is replaced by a global L2 projection (requiring a mass matrix solve) |
mfem::LpErrorEstimator | Compares the solution to a known coefficient |
mfem::LSZienkiewiczZhuEstimator | Implements the Zienkiewicz-Zhu error estimation procedure [1,2] using face-based patches [3] |
mfem::TMOPDeRefinerEstimator | |
mfem::navier::AccelTerm_T | Container for an acceleration term |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< Ops, dummy > | This struct implements the input (Eval, EvalSerialized) and output (Assemble, AssembleSerialized) operations for the given Ops. Ops is "bitwise or" of constants from the enum InOutData |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< 0, dummy > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< 1, dummy > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< 2, dummy > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Action< 3, dummy > | |
mfem::AdaptivityEvaluator | |
mfem::AdvectorCG | |
mfem::InterpolatorFP | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< IOData, impl_traits_t > | Auxiliary templated struct AData, used by the Eval() and Assemble() methods |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< 0, it_t > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< 1, it_t > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< 2, it_t > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< 3, it_t > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::AData< IData|OData, it_t > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::BData< IData, OData, it_t > | This struct is similar to struct AData, adding separate static data members for the input (InData) and output (OutData) data types |
mfem::adios2stream | |
mfem::AlgoimIntegrationRule | |
Gecko::Arc | |
mfem::Array< T > | |
mfem::Array2D< T > | Dynamic 2D array using row-major layout |
mfem::Array2D< double > | |
mfem::Array2D< int > | |
mfem::Array2D< mfem::Operator * > | |
mfem::Array2D< mfem::OperatorHandle * > | |
mfem::Array2D< mfem::SparseMatrix * > | |
mfem::Array3D< T > | |
mfem::Array< Basis * > | |
mfem::Array< bool > | |
mfem::Array< CeedOperator > | |
mfem::Array< char > | |
mfem::Array< const mfem::KnotVector * > | |
mfem::Array< const mfem::Operator * > | |
mfem::Array< const mfem::SparseMatrix * > | |
mfem::Array< Dist_Level_Set_Coefficient * > | |
mfem::Array< double * > | |
mfem::Array< double > | |
mfem::Array< FiniteElementSpace * > | |
mfem::Array< Geometry::Type > | |
mfem::Mesh::GeometryList | List of mesh geometries stored as Array<Geometry::Type> |
mfem::Array< GroupId > | |
mfem::Array< HYPRE_BigInt > | |
mfem::Array< HYPRE_ParVector > | |
mfem::Array< int > | |
mfem::Array< IntegrationPoint > | |
mfem::IntegrationRule | Class for an integration rule - an Array of IntegrationPoint |
mfem::Array< mfem::Array< int > * > | |
mfem::Array< mfem::BilinearForm * > | |
mfem::Array< mfem::BilinearFormIntegrator * > | |
mfem::Array< mfem::BlockNonlinearFormIntegrator * > | |
mfem::Array< mfem::BlockOperator * > | |
mfem::Array< mfem::ceed::AlgebraicInterpolation * > | |
mfem::Array< mfem::Coefficient * > | |
mfem::Array< mfem::Connection > | |
mfem::Array< mfem::DeltaLFIntegrator * > | |
mfem::Array< mfem::DenseMatrix * > | |
mfem::Array< mfem::DofToQuad * > | |
mfem::Array< mfem::DofTransformation * > | |
mfem::Array< mfem::Element * > | |
mfem::Array< mfem::Eliminator * > | |
mfem::Array< mfem::Embedding > | |
mfem::Array< mfem::FaceGeometricFactors * > | |
mfem::Array< mfem::FaceQuadratureInterpolator * > | |
mfem::Array< mfem::FiniteElementCollection * > | |
mfem::Array< mfem::FiniteElementSpace * > | |
mfem::Array< mfem::GeometricFactors * > | |
mfem::Array< mfem::Geometry::Type > | |
mfem::Array< mfem::GridFunction * > | |
mfem::Array< mfem::IntegerSet * > | |
mfem::Array< mfem::IntegrationPoint > | |
mfem::Array< mfem::IntegrationRule * > | |
mfem::Array< mfem::InterpConfig > | |
mfem::Array< mfem::KnotVector * > | |
mfem::Array< mfem::LinearFormIntegrator * > | |
mfem::Array< mfem::Mesh * > | |
mfem::Array< mfem::Mesh::FaceInfo > | |
mfem::Array< mfem::Mesh::NCFaceInfo > | |
mfem::Array< mfem::MeshOperator * > | |
mfem::Array< mfem::NCInterpConfig > | |
mfem::Array< mfem::NCMesh::Element * > | |
mfem::Array< mfem::NCMesh::Face * > | |
mfem::Array< mfem::NCMesh::Master > | |
mfem::Array< mfem::NCMesh::MeshId > | |
mfem::Array< mfem::NCMesh::Node * > | |
mfem::Array< mfem::NCMesh::Slave > | |
mfem::Array< mfem::NonlinearFormIntegrator * > | |
mfem::Array< mfem::NURBSPatch * > | |
mfem::Array< mfem::Operator * > | |
mfem::Array< mfem::OperatorHandle * > | |
mfem::Array< mfem::ParametricBNLFormIntegrator * > | |
mfem::Array< mfem::ParFiniteElementSpace * > | |
mfem::Array< mfem::ParGridFunction * > | |
mfem::Array< mfem::ParMesh::Vert3 > | |
mfem::Array< mfem::ParMesh::Vert4 > | |
mfem::Array< mfem::QuadratureInterpolator * > | |
mfem::Array< mfem::RefinedGeometry * > | |
mfem::Array< mfem::Refinement > | |
mfem::Array< mfem::Solver * > | |
mfem::Array< mfem::SparseMatrix * > | |
mfem::Array< mfem::TMOP_Integrator * > | |
mfem::Array< mfem::TMOP_QualityMetric * > | |
mfem::Array< mfem::TransposeOperator * > | |
mfem::Array< mfem::Triple< int, int, int > > | |
mfem::Array< mfem::Vector * > | |
mfem::Array< mfem::Vertex > | |
mfem::Array< Option > | |
mfem::Array< ParFiniteElementSpace * > | |
mfem::Array< socketstream * > | |
mfem::Array< T * > | |
mfem::Array< unsigned char > | |
mfem::Array< unsigned int > | |
mfem::AssignOp | |
mfem::AutoSIMD< scalar_t, S, align_bytes_ > | |
mfem::AutoSIMD< double, 2, 16 > | |
mfem::AutoSIMD< double, 4, 32 > | |
mfem::AutoSIMD< double, 8, 64 > | |
mfem::AutoSIMDTraits< complex_t, real_t > | |
mfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >::Aux< is_const, dummy > | |
mfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >::Aux< false, dummy > | |
mfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >::Aux< true, dummy > | |
mfem::Backend | MFEM backends |
mfem::BaseQFunction | Base class for representing function at integration points |
mfem::QLinearDiffusion | |
mfem::Poly_1D::Basis | Class for evaluating 1D nodal, positive (Bernstein), or integrated (Gerritsma) bases |
mfem::ceed::BasisHash | |
mfem::BasisType | Possible basis types. Note that not all elements can use all BasisType(s) |
mfem::BatchedLOR_ADS | |
mfem::BatchedLOR_AMS | |
mfem::BatchedLORAssembly | Efficient batched assembly of LOR discretizations on device |
mfem::BatchedLORKernel | Abstract base class for the batched LOR assembly kernels |
mfem::BatchedLOR_H1 | |
mfem::BatchedLOR_ND | |
mfem::BatchedLOR_RT | |
mfem::BlockArray< T > | |
mfem::HashTable< T > | |
mfem::BlockArray< mfem::NCMesh::Element > | |
mfem::BlockArray< mfem::NCMesh::Face > | |
mfem::HashTable< mfem::NCMesh::Face > | |
mfem::BlockArray< mfem::NCMesh::Node > | |
mfem::HashTable< mfem::NCMesh::Node > | |
mfem::BlockNonlinearFormIntegrator | |
mfem::DiffusionObjIntegrator | |
mfem::IncompressibleNeoHookeanIntegrator | |
mfem::kernels::InvariantsEvaluator2D::Buffers | |
mfem::kernels::InvariantsEvaluator3D::Buffers | |
mfem::CoarseFineTransformations | Defines the coarse-fine transformations of all fine elements |
mfem::ceed::Coefficient | |
mfem::ceed::VariableCoefficient | |
mfem::ceed::GridCoefficient | |
mfem::ceed::QuadCoefficient | |
mfem::Coefficient | Base class Coefficients that optionally depend on space and time. These are used by the BilinearFormIntegrator, LinearFormIntegrator, and NonlinearFormIntegrator classes to represent the physical coefficients in the PDEs that are being discretized. This class can also be used in a more general way to represent functions that don't necessarily belong to a FE space, e.g., to project onto GridFunctions to use as initial conditions, exact solutions, etc. See, e.g., ex4 or ex22 for these uses |
Combo_Level_Set_Coefficient | Combination of level sets: +1 inside the true domain, -1 outside |
Dist_Level_Set_Coefficient | Level set coefficient: +1 inside the true domain, -1 outside |
mfem::ConstantCoefficient | A coefficient that is constant across space and time |
mfem::DeltaCoefficient | Delta function coefficient optionally multiplied by a weight coefficient and a scaled time dependent C-function |
mfem::DeterminantCoefficient | Scalar coefficient defined as the determinant of a matrix coefficient |
mfem::DivergenceGridFunctionCoefficient | Scalar coefficient defined as the Divergence of a vector GridFunction |
mfem::electromagnetics::JouleHeatingCoefficient | |
mfem::electromagnetics::MeshDependentCoefficient | |
mfem::ExtrudeCoefficient | Class used for extruding scalar GridFunctions |
mfem::FunctionCoefficient | A general function coefficient |
mfem::GradComponentCoeff | |
mfem::GridFunctionCoefficient | Coefficient defined by a GridFunction. This coefficient is mesh dependent |
mfem::electromagnetics::ScaledGFCoefficient | |
mfem::InnerProductCoefficient | Scalar coefficient defined as the inner product of two vector coefficients |
mfem::NormalGradCoeff | |
mfem::NormalGradComponentCoeff | |
mfem::PowerCoefficient | Scalar coefficient defined as a scalar raised to a power |
mfem::PProductCoefficient | |
mfem::ProductCoefficient | Scalar coefficient defined as the product of two scalar coefficients or a scalar and a scalar coefficient |
mfem::PWCoefficient | A piecewise coefficient with the pieces keyed off the element attribute numbers |
mfem::PWConstCoefficient | A piecewise constant coefficient with the constants keyed off the element attribute numbers |
mfem::QuadratureFunctionCoefficient | Quadrature function coefficient which requires that the quadrature rules used for this coefficient be the same as those that live within the supplied QuadratureFunction |
mfem::RatioCoefficient | Scalar coefficient defined as the ratio of two scalars where one or both scalars are scalar coefficients |
mfem::RestrictedCoefficient | Derived coefficient that takes the value of the parent coefficient for the active attributes and is zero otherwise |
mfem::ShiftedFunctionCoefficient | |
mfem::SumCoefficient | Scalar coefficient defined as the linear combination of two scalar coefficients or a scalar and a scalar coefficient |
mfem::TransformedCoefficient | A coefficient that depends on 1 or 2 parent coefficients and a transformation rule represented by a C-function |
mfem::VectorRotProductCoefficient | Scalar coefficient defined as a cross product of two vectors in the xy-plane |
mfem::TMassKernel< SDim, Dim, complex_t >::CoefficientEval< IR, coeff_t, impl_traits_t > | |
mfem::TDiffusionKernel< 1, 1, complex_t >::CoefficientEval< IR, coeff_t, impl_traits_t > | |
mfem::TDiffusionKernel< 2, 2, complex_t >::CoefficientEval< IR, coeff_t, impl_traits_t > | |
mfem::TDiffusionKernel< 3, 3, complex_t >::CoefficientEval< IR, coeff_t, impl_traits_t > | |
Gecko::Node::Comparator | |
mfem::ComplexFactors | |
mfem::ComplexCholeskyFactors | |
mfem::ComplexLUFactors | |
mfem::Connection | Helper struct for defining a connectivity table, see Table::MakeFromList |
mfem::Geometry::Constants< Geom > | |
mfem::Geometry::Constants< Geometry::CUBE > | |
mfem::Geometry::Constants< Geometry::POINT > | |
mfem::Geometry::Constants< Geometry::PRISM > | |
mfem::Geometry::Constants< Geometry::PYRAMID > | |
mfem::Geometry::Constants< Geometry::SEGMENT > | |
mfem::Geometry::Constants< Geometry::SQUARE > | |
mfem::Geometry::Constants< Geometry::TETRAHEDRON > | |
mfem::Geometry::Constants< Geometry::TRIANGLE > | |
mfem::ConvergenceStudy | Class to compute error and convergence rates. It supports H1, H(curl) (ND elements), H(div) (RT elements) and L2 (DG) |
mfem::Cut | All subclasses of Cut will implement intersection routines and quadrature point generation within the cut in the intersection of two elements. Although, this class is designed to support MortarAssembler and ParMortarAssembler, it can be used for any problem requiring to perform Petrov-Galerkin formulations on non-matching elements |
mfem::CuWrap< Dim > | |
mfem::CuWrap< 1 > | |
mfem::CuWrap< 2 > | |
mfem::CuWrap< 3 > | |
mfem::DataCollection | |
mfem::ADIOS2DataCollection | |
mfem::ConduitDataCollection | Data collection that uses the Conduit Mesh Blueprint specification |
mfem::FMSDataCollection | Data collection that uses FMS |
mfem::ParaViewDataCollection | Helper class for ParaView visualization data |
mfem::SidreDataCollection | Data collection with Sidre routines following the Conduit mesh blueprint specification |
mfem::VisItDataCollection | Data collection with VisIt I/O routines |
Dense | |
mfem::Ginkgo::VectorWrapper | |
mfem::DenseMatrixEigensystem | |
mfem::DenseMatrixGeneralizedEigensystem | |
mfem::DenseMatrixSVD | |
mfem::DenseTensor | Rank 3 tensor (array of matrices) |
mfem::Device | The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as CUDA, OCCA, RAJA and OpenMP |
mfem::DeviceTensor< Dim, Scalar > | A basic generic Tensor class, appropriate for use on the GPU |
mfem::blocksolvers::DFSData | Data for the divergence free solver |
mfem::blocksolvers::DFSSpaces | |
mfem::DGIndexer< FE > | |
mfem::TFunctionCoefficient< Func, complex_t >::Dim< dim, dummy > | |
mfem::TFunctionCoefficient< Func, complex_t >::Dim< 1, dummy > | |
mfem::TFunctionCoefficient< Func, complex_t >::Dim< 2, dummy > | |
mfem::TFunctionCoefficient< Func, complex_t >::Dim< 3, dummy > | |
mfem::DiscreteUpwindLOSolver | |
mfem::DistanceSolver | |
mfem::HeatDistanceSolver | |
mfem::NormalizationDistanceSolver | |
mfem::PLapDistanceSolver | |
mfem::DofToQuad | Structure representing the matrices/tensors needed to evaluate (in reference space) the values, gradients, divergences, or curls of a FiniteElement at a the quadrature points of a given IntegrationRule |
mfem::DofTransformation | |
mfem::ND_DofTransformation | |
mfem::ND_TetDofTransformation | DoF transformation implementation for the Nedelec basis on tetrahedra |
mfem::ND_TriDofTransformation | DoF transformation implementation for the Nedelec basis on triangles |
mfem::ND_WedgeDofTransformation | DoF transformation implementation for the Nedelec basis on wedge elements |
mfem::VDofTransformation | |
mfem::DSTable | |
mfem::DynamicVectorLayout | |
mfem::Element | Abstract data type element |
mfem::Hexahedron | Data type hexahedron element |
mfem::Point | Data type point element |
mfem::Pyramid | Data type Pyramid element |
mfem::Quadrilateral | Data type quadrilateral element |
mfem::Segment | Data type line segment element |
mfem::Tetrahedron | Data type tetrahedron element |
mfem::Triangle | Data type triangle element |
mfem::Wedge | Data type Wedge element |
mfem::NCMesh::Element | |
mfem::ElementDofIndexer< FE > | |
mfem::ParNCMesh::ElementSet | |
mfem::ElementTransformation | |
mfem::IsoparametricTransformation | A standard isoparametric element transformation |
mfem::FaceElementTransformations | A specialized ElementTransformation class representing a face and its two neighboring elements |
mfem::Eliminator | Perform elimination of a single constraint |
mfem::Embedding | Defines the position of a fine element within a coarse element |
EnableCreateMethod | |
mfem::Ginkgo::OperatorWrapper | |
EnableLinOp | |
mfem::Ginkgo::OperatorWrapper | |
std::exception | STL class |
mfem::ErrorException | Exception class thrown when MFEM encounters an error and the current ErrorAction is set to MFEM_ERROR_THROW |
strict_fstream::Exception | Exception class thrown by failed operations |
zstr::Exception | Exception class thrown by failed zlib operations |
mfem::Extrapolator | |
mfem::TMassKernel< SDim, Dim, complex_t >::f_asm_data< qpts > | Partially assembled data type for one element with the given number of quadrature points. This type is used in full element matrix assembly |
mfem::TDiffusionKernel< 1, 1, complex_t >::f_asm_data< qpts > | Partially assembled data type for one element with the given number of quadrature points. This type is used in full element matrix assembly |
mfem::TDiffusionKernel< 2, 2, complex_t >::f_asm_data< qpts > | Partially assembled data type for one element with the given number of quadrature points. This type is used in full element matrix assembly. Stores one general (non-symmetric) 2 x 2 matrix per point |
mfem::TDiffusionKernel< 3, 3, complex_t >::f_asm_data< qpts > | Partially assembled data type for one element with the given number of quadrature points. This type is used in full element matrix assembly. Stores one general (non-symmetric) 3 x 3 matrix per point |
mfem::FaceGeometricFactors | Structure for storing face geometric factors: coordinates, Jacobians, determinants of the Jacobians, and normal vectors |
mfem::Mesh::FaceInfo | This structure stores the low level information necessary to interpret the configuration of elements on a specific face. This information can be accessed using methods like GetFaceElements(), GetFaceInfos(), FaceIsInterior(), etc |
mfem::Mesh::FaceInformation | This structure is used as a human readable output format that decipheres the information contained in Mesh::FaceInfo when using the Mesh::GetFaceInformation() method |
mfem::FaceQuadratureInterpolator | A class that performs interpolation from a face E-vector to quadrature point values and/or derivatives (Q-vectors) on the faces |
mfem::Factors | |
mfem::CholeskyFactors | |
mfem::LUFactors | |
mfem::FieldEvaluator_base< FESpace_t, VecLayout_t, IR, complex_t, real_t > | Field evaluators – values of a given global FE grid function This is roughly speaking a templated version of GridFunction |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t > | Complex_t - dof/qpt data type, real_t - ShapeEvaluator (FE basis) data type |
mfem::FindPointsGSLIB | FindPointsGSLIB can robustly evaluate a GridFunction on an arbitrary collection of points. There are three key functions in FindPointsGSLIB: |
mfem::OversetFindPointsGSLIB | OversetFindPointsGSLIB enables use of findpts for arbitrary number of overlapping grids. The parameters in this class are the same as FindPointsGSLIB with the difference of additional inputs required to account for more than 1 mesh |
mfem::FiniteElement | Abstract class for all finite elements |
mfem::ScalarFiniteElement | Class for finite elements with basis functions that return scalar values |
mfem::H1Ser_QuadrilateralElement | Arbitrary order H1 serendipity elements in 2D on a quad |
mfem::NodalFiniteElement | Class for standard nodal finite elements |
mfem::BiCubic2DFiniteElement | A 2D bi-cubic element on a square with uniformly spaces nodes |
mfem::BiLinear2DFiniteElement | A 2D bi-linear element on a square with nodes at the vertices of the square |
mfem::BiQuad2DFiniteElement | A 2D bi-quadratic element on a square with uniformly spaced nodes |
mfem::CrouzeixRaviartFiniteElement | A 2D Crouzeix-Raviart element on triangle |
mfem::CrouzeixRaviartQuadFiniteElement | A 2D Crouzeix-Raviart finite element on square |
mfem::Cubic1DFiniteElement | A 1D cubic element with uniformly spaced nodes |
mfem::Cubic2DFiniteElement | A 2D cubic element on a triangle with uniformly spaced nodes |
mfem::Cubic3DFiniteElement | |
mfem::GaussBiLinear2DFiniteElement | A 2D bi-linear element on a square with nodes at the "Gaussian" points |
mfem::GaussBiQuad2DFiniteElement | A 2D bi-quadratic element on a square with nodes at the 9 "Gaussian" points |
mfem::GaussLinear2DFiniteElement | A linear element on a triangle with nodes at the 3 "Gaussian" points |
mfem::GaussQuad2DFiniteElement | A quadratic element on triangle with nodes at the "Gaussian" points |
mfem::H1_TetrahedronElement | Arbitrary order H1 elements in 3D on a tetrahedron |
mfem::H1_TriangleElement | Arbitrary order H1 elements in 2D on a triangle |
mfem::H1_WedgeElement | Arbitrary order H1 elements in 3D on a wedge |
mfem::BiCubic3DFiniteElement | Class for cubic FE on wedge |
mfem::BiLinear3DFiniteElement | Class for linear FE on wedge |
mfem::BiQuadratic3DFiniteElement | Class for quadratic FE on wedge |
mfem::L2_TetrahedronElement | Arbitrary order L2 elements in 3D on a tetrahedron |
mfem::L2_TriangleElement | Arbitrary order L2 elements in 2D on a triangle |
mfem::L2_WedgeElement | Arbitrary order L2 elements in 3D on a wedge |
mfem::P0WedgeFiniteElement | A 0th order L2 element on a Wedge |
mfem::Lagrange1DFiniteElement | A 1D element with uniform nodes |
mfem::LagrangeHexFiniteElement | Tensor products of 1D Lagrange1DFiniteElement (only degree 2 is functional) |
mfem::Linear1DFiniteElement | A 1D linear element with nodes on the endpoints |
mfem::Linear2DFiniteElement | A 2D linear element on triangle with nodes at the vertices of the triangle |
mfem::Linear3DFiniteElement | A 3D linear element on a tetrahedron with nodes at the vertices of the tetrahedron |
mfem::LinearPyramidFiniteElement | A linear element defined on a square pyramid |
mfem::LinearWedgeFiniteElement | A linear element defined on a triangular prism |
mfem::NodalTensorFiniteElement | |
mfem::H1_HexahedronElement | Arbitrary order H1 elements in 3D on a cube |
mfem::H1_QuadrilateralElement | Arbitrary order H1 elements in 2D on a square |
mfem::H1_SegmentElement | Arbitrary order H1 elements in 1D |
mfem::L2_HexahedronElement | Arbitrary order L2 elements in 3D on a cube |
mfem::L2_QuadrilateralElement | Arbitrary order L2 elements in 2D on a square |
mfem::L2_SegmentElement | Arbitrary order L2 elements in 1D on a segment |
mfem::P0HexFiniteElement | A 3D constant element on a cube |
mfem::P0PyrFiniteElement | A 3D constant element on a pyramid |
mfem::P0QuadFiniteElement | A 2D constant element on a square |
mfem::P0SegmentFiniteElement | A 1D constant element on a segment |
mfem::P0TetFiniteElement | A 3D constant element on a tetrahedron |
mfem::P0TriangleFiniteElement | A 2D constant element on a triangle |
mfem::P0WdgFiniteElement | A 3D constant element on a wedge |
mfem::P1OnQuadFiniteElement | A 2D linear element on a square with 3 nodes at the vertices of the lower left triangle |
mfem::P1SegmentFiniteElement | A 1D linear element with nodes at 1/3 and 2/3 (trace of RT1) |
mfem::P1TetNonConfFiniteElement | A 3D Crouzeix-Raviart element on the tetrahedron |
mfem::P2SegmentFiniteElement | A 1D quadratic element with nodes at the Gaussian points (trace of RT2) |
mfem::PointFiniteElement | A 0D point finite element |
mfem::Quad1DFiniteElement | A 1D quadratic finite element with uniformly spaced nodes |
mfem::Quad2DFiniteElement | A 2D quadratic element on triangle with nodes at the vertices and midpoints of the triangle |
mfem::Quadratic3DFiniteElement | A 3D quadratic element on a tetrahedron with uniformly spaced nodes |
mfem::RefinedBiLinear2DFiniteElement | A 2D refined bi-linear FE on a square |
mfem::RefinedLinear1DFiniteElement | A 1D refined linear element |
mfem::RefinedLinear2DFiniteElement | A 2D refined linear element on a triangle |
mfem::RefinedLinear3DFiniteElement | A 2D refined linear element on a tetrahedron |
mfem::RefinedTriLinear3DFiniteElement | A 3D refined tri-linear element on a cube |
mfem::RotTriLinearHexFiniteElement | |
mfem::TriLinear3DFiniteElement | A 3D tri-linear element on a cube with nodes at the vertices of the cube |
mfem::NURBSFiniteElement | An arbitrary order and dimension NURBS element |
mfem::NURBS1DFiniteElement | An arbitrary order 1D NURBS element on a segment |
mfem::NURBS2DFiniteElement | An arbitrary order 2D NURBS element on a square |
mfem::NURBS3DFiniteElement | An arbitrary order 3D NURBS element on a cube |
mfem::PositiveFiniteElement | Class for finite elements utilizing the always positive Bernstein basis |
mfem::BiQuadPos2DFiniteElement | |
mfem::H1Pos_TetrahedronElement | |
mfem::H1Pos_TriangleElement | Arbitrary order H1 elements in 2D utilizing the Bernstein basis on a triangle |
mfem::H1Pos_WedgeElement | Arbitrary order H1 elements in 3D utilizing the Bernstein basis on a wedge |
mfem::L2Pos_TetrahedronElement | |
mfem::L2Pos_TriangleElement | Arbitrary order L2 elements in 2D utilizing the Bernstein basis on a triangle |
mfem::L2Pos_WedgeElement | Arbitrary order L2 elements in 3D utilizing the Bernstein basis on a wedge |
mfem::PositiveTensorFiniteElement | |
mfem::H1Pos_HexahedronElement | Arbitrary order H1 elements in 3D utilizing the Bernstein basis on a cube |
mfem::H1Pos_QuadrilateralElement | Arbitrary order H1 elements in 2D utilizing the Bernstein basis on a square |
mfem::H1Pos_SegmentElement | Arbitrary order H1 elements in 1D utilizing the Bernstein basis |
mfem::L2Pos_HexahedronElement | Arbitrary order L2 elements in 3D utilizing the Bernstein basis on a cube |
mfem::L2Pos_QuadrilateralElement | Arbitrary order L2 elements in 2D utilizing the Bernstein basis on a square |
mfem::L2Pos_SegmentElement | Arbitrary order L2 elements in 1D utilizing the Bernstein basis on a segment |
mfem::QuadPos1DFiniteElement | A 1D quadratic positive element utilizing the 2nd order Bernstein basis |
mfem::VectorFiniteElement | Intermediate class for finite elements whose basis functions return vector values |
mfem::ND_R1D_PointElement | A 0D Nedelec finite element for the boundary of a 1D domain |
mfem::ND_R1D_SegmentElement | Arbitrary order, three component, Nedelec elements in 1D on a segment |
mfem::ND_R2D_FiniteElement | |
mfem::ND_R2D_QuadrilateralElement | Arbitrary order Nedelec 3D elements in 2D on a square |
mfem::ND_R2D_TriangleElement | Arbitrary order Nedelec 3D elements in 2D on a triangle |
mfem::ND_R2D_SegmentElement | |
mfem::ND_TetrahedronElement | Arbitrary order Nedelec elements in 3D on a tetrahedron |
mfem::ND_TriangleElement | Arbitrary order Nedelec elements in 2D on a triangle |
mfem::ND_WedgeElement | |
mfem::Nedelec1HexFiniteElement | A 3D 1st order Nedelec element on a cube |
mfem::Nedelec1PyrFiniteElement | A 3D 1st order Nedelec element on a pyramid |
mfem::Nedelec1TetFiniteElement | A 3D 1st order Nedelec element on a tetrahedron |
mfem::Nedelec1WdgFiniteElement | A 3D 1st order Nedelec element on a wedge |
mfem::RT0HexFiniteElement | A 3D 0th order Raviert-Thomas element on a cube |
mfem::RT0PyrFiniteElement | A 3D 0th order Raviert-Thomas element on a pyramid |
mfem::RT0QuadFiniteElement | A 2D 1st order Raviart-Thomas vector element on a square |
mfem::RT0TetFiniteElement | A 3D 0th order Raviert-Thomas element on a tetrahedron |
mfem::RT0TriangleFiniteElement | A 2D 1st order Raviart-Thomas vector element on a triangle |
mfem::RT0WdgFiniteElement | A 3D 0th order Raviert-Thomas element on a wedge |
mfem::RT1HexFiniteElement | A 3D 1st order Raviert-Thomas element on a cube |
mfem::RT1QuadFiniteElement | A 2D 2nd order Raviart-Thomas vector element on a square |
mfem::RT1TriangleFiniteElement | A 2D 2nd order Raviart-Thomas vector element on a triangle |
mfem::RT2QuadFiniteElement | A 2D 3rd order Raviart-Thomas vector element on a square |
mfem::RT2TriangleFiniteElement | A 2D 3rd order Raviart-Thomas vector element on a triangle |
mfem::RT_R1D_SegmentElement | Arbitrary order, three component, Raviart-Thomas elements in 1D on a segment |
mfem::RT_R2D_FiniteElement | |
mfem::RT_R2D_QuadrilateralElement | Arbitrary order Raviart-Thomas 3D elements in 2D on a square |
mfem::RT_R2D_TriangleElement | Arbitrary order Raviart-Thomas 3D elements in 2D on a triangle |
mfem::RT_R2D_SegmentElement | |
mfem::RT_TetrahedronElement | Arbitrary order Raviart-Thomas elements in 3D on a tetrahedron |
mfem::RT_TriangleElement | Arbitrary order Raviart-Thomas elements in 2D on a triangle |
mfem::RT_WedgeElement | |
mfem::VectorTensorFiniteElement | |
mfem::ND_HexahedronElement | Arbitrary order Nedelec elements in 3D on a cube |
mfem::ND_QuadrilateralElement | Arbitrary order Nedelec elements in 2D on a square |
mfem::ND_SegmentElement | Arbitrary order Nedelec elements in 1D on a segment |
mfem::RT_HexahedronElement | Arbitrary order Raviart-Thomas elements in 3D on a cube |
mfem::RT_QuadrilateralElement | Arbitrary order Raviart-Thomas elements in 2D on a square |
mfem::FiniteElementCollection | Collection of finite elements from the same family in multiple dimensions. This class is used to match the degrees of freedom of a FiniteElementSpace between elements, and to provide the finite element restriction from an element to its boundary |
mfem::Const2DFECollection | Piecewise-constant discontinuous finite elements in 2D. This class is kept only for backward compatibility, consider using L2_FECollection instead |
mfem::Const3DFECollection | Piecewise-constant discontinuous finite elements in 3D. This class is kept only for backward compatibility, consider using L2_FECollection instead |
mfem::CrouzeixRaviartFECollection | Crouzeix-Raviart nonconforming elements in 2D |
mfem::CubicDiscont2DFECollection | Piecewise-cubic discontinuous finite elements in 2D. This class is kept only for backward compatibility, consider using L2_FECollection instead |
mfem::CubicFECollection | Piecewise-(bi)cubic continuous finite elements |
mfem::GaussLinearDiscont2DFECollection | Version of LinearDiscont2DFECollection with dofs in the Gaussian points |
mfem::GaussQuadraticDiscont2DFECollection | Version of QuadraticDiscont2DFECollection with dofs in the Gaussian points |
mfem::H1_FECollection | Arbitrary order H1-conforming (continuous) finite elements |
mfem::H1_Trace_FECollection | Arbitrary order "H^{1/2}-conforming" trace finite elements defined on the interface between mesh elements (faces,edges,vertices); these are the trace FEs of the H1-conforming FEs |
mfem::H1Pos_FECollection | Arbitrary order H1-conforming (continuous) finite elements with positive basis functions |
mfem::H1Ser_FECollection | |
mfem::L2_FECollection | Arbitrary order "L2-conforming" discontinuous finite elements |
mfem::LinearDiscont2DFECollection | Piecewise-linear discontinuous finite elements in 2D. This class is kept only for backward compatibility, consider using L2_FECollection instead |
mfem::LinearDiscont3DFECollection | Piecewise-linear discontinuous finite elements in 3D. This class is kept only for backward compatibility, consider using L2_FECollection instead |
mfem::LinearFECollection | Piecewise-(bi/tri)linear continuous finite elements |
mfem::LinearNonConf3DFECollection | Piecewise-linear nonconforming finite elements in 3D |
mfem::Local_FECollection | Discontinuous collection defined locally by a given finite element |
mfem::ND1_3DFECollection | Lowest order Nedelec finite elements in 3D. This class is kept only for backward compatibility, consider using the new ND_FECollection instead |
mfem::ND_FECollection | Arbitrary order H(curl)-conforming Nedelec finite elements |
mfem::ND_Trace_FECollection | Arbitrary order H(curl)-trace finite elements defined on the interface between mesh elements (faces,edges); these are the tangential trace FEs of the H(curl)-conforming FEs |
mfem::ND_R1D_FECollection | Arbitrary order 3D H(curl)-conforming Nedelec finite elements in 1D |
mfem::ND_R2D_FECollection | Arbitrary order 3D H(curl)-conforming Nedelec finite elements in 2D |
mfem::ND_R2D_Trace_FECollection | Arbitrary order 3D H(curl)-trace finite elements in 2D defined on the interface between mesh elements (edges); these are the tangential trace FEs of the H(curl)-conforming FEs |
mfem::NURBSFECollection | Arbitrary order non-uniform rational B-splines (NURBS) finite elements |
mfem::P1OnQuadFECollection | Linear (P1) finite elements on quadrilaterals |
mfem::QuadraticDiscont2DFECollection | Piecewise-quadratic discontinuous finite elements in 2D. This class is kept only for backward compatibility, consider using L2_FECollection instead |
mfem::QuadraticDiscont3DFECollection | Piecewise-quadratic discontinuous finite elements in 3D. This class is kept only for backward compatibility, consider using L2_FECollection instead |
mfem::QuadraticFECollection | Piecewise-(bi)quadratic continuous finite elements |
mfem::QuadraticPosDiscont2DFECollection | Version of QuadraticDiscont2DFECollection with positive basis functions |
mfem::QuadraticPosFECollection | Version of QuadraticFECollection with positive basis functions |
mfem::RefinedLinearFECollection | Finite element collection on a macro-element |
mfem::RT0_2DFECollection | First order Raviart-Thomas finite elements in 2D. This class is kept only for backward compatibility, consider using RT_FECollection instead |
mfem::RT0_3DFECollection | First order Raviart-Thomas finite elements in 3D. This class is kept only for backward compatibility, consider using RT_FECollection instead |
mfem::RT1_2DFECollection | Second order Raviart-Thomas finite elements in 2D. This class is kept only for backward compatibility, consider using RT_FECollection instead |
mfem::RT1_3DFECollection | Second order Raviart-Thomas finite elements in 3D. This class is kept only for backward compatibility, consider using RT_FECollection instead |
mfem::RT2_2DFECollection | Third order Raviart-Thomas finite elements in 2D. This class is kept only for backward compatibility, consider using RT_FECollection instead |
mfem::RT_FECollection | Arbitrary order H(div)-conforming Raviart-Thomas finite elements |
mfem::DG_Interface_FECollection | |
mfem::RT_Trace_FECollection | Arbitrary order "H^{-1/2}-conforming" face finite elements defined on the interface between mesh elements (faces); these are the normal trace FEs of the H(div)-conforming FEs |
mfem::RT_R1D_FECollection | Arbitrary order 3D H(div)-conforming Raviart-Thomas finite elements in 1D |
mfem::RT_R2D_FECollection | Arbitrary order 3D H(div)-conforming Raviart-Thomas finite elements in 2D |
mfem::RT_R2D_Trace_FECollection | Arbitrary order 3D "H^{-1/2}-conforming" face finite elements defined on the interface between mesh elements (faces); these are the normal trace FEs of the H(div)-conforming FEs |
mfem::FiniteElementSpace | Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of degrees of freedom |
mfem::ceed::AlgebraicCoarseSpace | A way to use algebraic levels in a Multigrid object |
mfem::ceed::ParAlgebraicCoarseSpace | Parallel version of AlgebraicCoarseSpace |
mfem::common::H1_FESpace | |
mfem::common::ND_FESpace | |
mfem::common::RT_FESpace | |
mfem::ParFiniteElementSpace | Abstract parallel finite element space |
mfem::common::H1_ParFESpace | |
mfem::common::L2_ParFESpace | |
mfem::common::ND_ParFESpace | |
mfem::common::RT_ParFESpace | |
mfem::FiniteElementSpaceHierarchy | |
mfem::ceed::AlgebraicSpaceHierarchy | Hierarchy of AlgebraicCoarseSpace objects for use in Multigrid object |
mfem::ParFiniteElementSpaceHierarchy | |
Gecko::Functional | |
Gecko::FunctionalArithmetic | |
Gecko::FunctionalMaximum | |
Gecko::FunctionalQuasiconvex | |
Gecko::FunctionalGeometric | |
Gecko::FunctionalHarmonic | |
Gecko::FunctionalSMR | |
Gecko::FunctionalRMS | |
mfem::FunctionSpace | Describes the function space on each element |
mfem::GenericIntegrationRule< G, Q, Order, real_t > | |
mfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 1, 0, real_t > | |
mfem::TIntegrationRule< Geometry::TETRAHEDRON, 0, real_t > | |
mfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 1, 1, real_t > | |
mfem::TIntegrationRule< Geometry::TETRAHEDRON, 1, real_t > | |
mfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 11, 4, real_t > | |
mfem::TIntegrationRule< Geometry::TETRAHEDRON, 4, real_t > | |
mfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 14, 5, real_t > | |
mfem::TIntegrationRule< Geometry::TETRAHEDRON, 5, real_t > | |
mfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 24, 6, real_t > | |
mfem::TIntegrationRule< Geometry::TETRAHEDRON, 6, real_t > | |
mfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 31, 7, real_t > | |
mfem::TIntegrationRule< Geometry::TETRAHEDRON, 7, real_t > | |
mfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 4, 2, real_t > | |
mfem::TIntegrationRule< Geometry::TETRAHEDRON, 2, real_t > | |
mfem::GenericIntegrationRule< Geometry::TETRAHEDRON, 5, 3, real_t > | |
mfem::TIntegrationRule< Geometry::TETRAHEDRON, 3, real_t > | |
mfem::GenericIntegrationRule< Geometry::TRIANGLE, 1, 0, real_t > | |
mfem::TIntegrationRule< Geometry::TRIANGLE, 0, real_t > | |
mfem::GenericIntegrationRule< Geometry::TRIANGLE, 1, 1, real_t > | |
mfem::TIntegrationRule< Geometry::TRIANGLE, 1, real_t > | |
mfem::GenericIntegrationRule< Geometry::TRIANGLE, 12, 6, real_t > | |
mfem::TIntegrationRule< Geometry::TRIANGLE, 6, real_t > | |
mfem::GenericIntegrationRule< Geometry::TRIANGLE, 12, 7, real_t > | |
mfem::TIntegrationRule< Geometry::TRIANGLE, 7, real_t > | |
mfem::GenericIntegrationRule< Geometry::TRIANGLE, 3, 2, real_t > | |
mfem::TIntegrationRule< Geometry::TRIANGLE, 2, real_t > | |
mfem::GenericIntegrationRule< Geometry::TRIANGLE, 4, 3, real_t > | |
mfem::TIntegrationRule< Geometry::TRIANGLE, 3, real_t > | |
mfem::GenericIntegrationRule< Geometry::TRIANGLE, 6, 4, real_t > | |
mfem::TIntegrationRule< Geometry::TRIANGLE, 4, real_t > | |
mfem::GenericIntegrationRule< Geometry::TRIANGLE, 7, 5, real_t > | |
mfem::TIntegrationRule< Geometry::TRIANGLE, 5, real_t > | |
mfem::GeometricFactors | Structure for storing mesh geometric factors: coordinates, Jacobians, and determinants of the Jacobians |
mfem::Geometry | |
mfem::GeometryRefiner | |
mfem::NCMesh::GeomInfo | This holds in one place the constants about the geometries we support |
mfem::TElementTransformation< Mesh_t, IR, real_t >::Get< coeff_t, kernel_t > | |
mfem::Ginkgo::GinkgoExecutor | |
mfem::Ginkgo::gko_mfem_destroy< T > | |
mfem::GnuTLS_global_state | |
mfem::GnuTLS_session_params | |
mfem::GnuTLS_status | |
Gecko::Graph | |
mfem::GridTransfer | Base class for transfer algorithms that construct transfer Operators between two finite element (FE) spaces |
mfem::InterpolationGridTransfer | Transfer data between a coarse mesh and an embedded refined mesh using interpolation |
mfem::L2ProjectionGridTransfer | Transfer data in L2 and H1 finite element spaces between a coarse mesh and an embedded refined mesh using L2 projection |
mfem::GroupCommunicator | Communicator performing operations within groups defined by a GroupTopology with arbitrary-size data associated with each group |
mfem::GroupTopology | |
mfem::H1_FiniteElement< G, P > | |
mfem::H1_FiniteElement< Geometry::CUBE, P > | |
mfem::H1_FiniteElement< Geometry::SEGMENT, P > | |
mfem::H1_FiniteElement< Geometry::SQUARE, P > | |
mfem::H1_FiniteElement< Geometry::TETRAHEDRON, P > | |
mfem::H1_FiniteElement< Geometry::TRIANGLE, P > | |
mfem::Hashed2 | |
mfem::NCMesh::Node | |
mfem::Hashed4 | |
mfem::NCMesh::Face | |
mfem::HashFunction | Hash function for data sequences |
hiopInterfaceDenseConstraints | |
mfem::HiopOptimizationProblem | Internal class - adapts the OptimizationProblem class to HiOp's interface |
mfem::HipWrap< Dim > | |
mfem::HipWrap< 1 > | |
mfem::HipWrap< 2 > | |
mfem::HipWrap< 3 > | |
mfem::Hybridization | |
mfem::HyperelasticModel | Abstract class for hyperelastic models |
mfem::InverseHarmonicModel | |
mfem::NeoHookeanModel | |
mfem::TMOP_QualityMetric | Abstract class for local mesh quality metrics in the target-matrix optimization paradigm (TMOP) by P. Knupp et al |
mfem::TMOP_AMetric_011 | |
mfem::TMOP_AMetric_014a | 2D barrier Size (V) metric (polyconvex) |
mfem::TMOP_AMetric_036 | 2D barrier Shape+Size+Orientation (VOS) metric (polyconvex) |
mfem::TMOP_AMetric_107a | 2D barrier Shape+Orientation (OS) metric (polyconvex) |
mfem::TMOP_Combo_QualityMetric | Abstract class used to define combination of metrics with constant coefficients |
mfem::TMOP_AMetric_126 | 2D barrier Shape+Size (VS) metric (polyconvex) |
mfem::TMOP_Metric_066 | 2D non-barrier Shape+Size (VS) metric |
mfem::TMOP_Metric_080 | 2D barrier Shape+Size (VS) metric (polyconvex) |
mfem::TMOP_Metric_328 | 3D barrier Shape+Size (VS) metric (polyconvex) |
mfem::TMOP_Metric_332 | 3D barrier Shape+Size (VS) metric (polyconvex) |
mfem::TMOP_Metric_333 | 3D barrier Shape+Size (VS) metric, well-posed (polyconvex) |
mfem::TMOP_Metric_334 | 3D barrier Shape+Size (VS) metric, well-posed (polyconvex) |
mfem::TMOP_Metric_347 | 3D barrier Shape+Size (VS) metric, well-posed (polyconvex) |
mfem::TMOP_Metric_001 | 2D non-barrier metric without a type |
mfem::TMOP_Metric_002 | 2D barrier shape (S) metric (polyconvex) |
mfem::TMOP_Metric_004 | 2D non-barrier shape (S) metric |
mfem::TMOP_Metric_007 | 2D barrier Shape+Size (VS) metric (not polyconvex) |
mfem::TMOP_Metric_009 | 2D barrier Shape+Size (VS) metric (not polyconvex) |
mfem::TMOP_Metric_014 | 2D non-barrier Shape+Size+Orientation (VOS) metric (polyconvex) |
mfem::TMOP_Metric_022 | 2D Shifted barrier form of shape metric (mu_2) |
mfem::TMOP_Metric_050 | 2D barrier (not a shape) metric (polyconvex) |
mfem::TMOP_Metric_055 | 2D non-barrier size (V) metric (not polyconvex) |
mfem::TMOP_Metric_056 | 2D barrier size (V) metric (polyconvex) |
mfem::TMOP_Metric_058 | 2D barrier shape (S) metric (not polyconvex) |
mfem::TMOP_Metric_077 | 2D barrier size (V) metric (polyconvex) |
mfem::TMOP_Metric_085 | 2D barrier Shape+Orientation (OS) metric (polyconvex) |
mfem::TMOP_Metric_098 | 2D barrier Shape+Size+Orientation (VOS) metric (polyconvex) |
mfem::TMOP_Metric_211 | 2D untangling metric |
mfem::TMOP_Metric_252 | Shifted barrier form of metric 56 (area, ideal barrier metric), 2D |
mfem::TMOP_Metric_301 | 3D barrier Shape (S) metric, well-posed (polyconvex & invex) |
mfem::TMOP_Metric_302 | 3D barrier Shape (S) metric, well-posed (polyconvex & invex) |
mfem::TMOP_Metric_303 | 3D barrier Shape (S) metric, well-posed (polyconvex & invex) |
mfem::TMOP_Metric_304 | 3D barrier Shape (S) metric, well-posed (polyconvex & invex) |
mfem::TMOP_Metric_311 | 3D Size (V) untangling metric |
mfem::TMOP_Metric_313 | 3D Shape (S) metric, untangling version of 303 |
mfem::TMOP_Metric_315 | 3D non-barrier metric without a type |
mfem::TMOP_Metric_316 | 3D barrier metric without a type |
mfem::TMOP_Metric_321 | 3D barrier Shape+Size (VS) metric, well-posed (invex) |
mfem::TMOP_Metric_322 | 3D barrier Shape+Size (VS) metric, well-posed (invex) |
mfem::TMOP_Metric_323 | 3D barrier Shape+Size (VS) metric, well-posed (invex) |
mfem::TMOP_Metric_352 | 3D shifted barrier form of metric 316 (not typed) |
mfem::TMOP_Metric_360 | 3D non-barrier Shape (S) metric |
mfem::TMOP_Metric_aspratio2D | 2D non-barrier Aspect ratio metric |
mfem::TMOP_Metric_aspratio3D | 3D non-barrier Aspect ratio metric |
mfem::TMOP_Metric_skew2D | 2D non-barrier Skew metric |
mfem::TMOP_Metric_skew3D | 3D non-barrier Skew metric |
mfem::TMOP_WorstCaseUntangleOptimizer_Metric | |
mfem::Hypre | A simple singleton class for hypre's global settings, that 1) calls HYPRE_Init() and sets some GPU-relevant options at construction and 2) calls HYPRE_Finalize() at destruction |
mfem::HypreAME | |
mfem::HypreLOBPCG | |
mfem::Init< N, Dim, T, Args > | A class to initialize the size of a Tensor |
mfem::Init< Dim, Dim, T, Args...> | |
mfem::kernels::Instances< K, N > | Instances |
mfem::kernels::Instances< K, 1 > | |
mfem::IntegerSet | A set of integers |
mfem::IntegrationPoint | Class for integration point with weight |
mfem::IntegrationPointTransformation | |
mfem::IntegrationRules | Container class for integration rules |
mfem::InterpConfig | |
mfem::InterpolationManager | This class manages the storage and computation of the interpolations from master (coarse) face to slave (fine) face |
mfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t > | |
mfem::kernels::InvariantsEvaluator2D | |
mfem::InvariantsEvaluator2D< scalar_t, scalar_ops > | Auxiliary class for evaluating the 2x2 matrix invariants and their first and second derivatives |
mfem::InvariantsEvaluator2D< double > | |
mfem::kernels::InvariantsEvaluator3D | |
mfem::InvariantsEvaluator3D< scalar_t, scalar_ops > | Auxiliary class for evaluating the 3x3 matrix invariants and their first and second derivatives |
mfem::InvariantsEvaluator3D< double > | |
mfem::InverseElementTransformation | The inverse transformation of a given ElementTransformation |
std::ios_base | STL class |
std::basic_ios< Char > | STL class |
std::basic_istream< Char > | STL class |
std::basic_ifstream< Char > | STL class |
std::ifstream | STL class |
strict_fstream::ifstream | |
std::basic_iostream< Char > | STL class |
std::basic_fstream< Char > | STL class |
std::fstream | STL class |
strict_fstream::fstream | |
std::basic_stringstream< Char > | STL class |
std::stringstream | STL class |
mfem::common::ElementMeshStream | |
std::istream | STL class |
mfem::ifgzstream | |
mfem::named_ifgzstream | |
zstr::ifstream | |
zstr::istream | |
std::basic_ostream< Char > | STL class |
std::basic_iostream< Char > | STL class |
std::basic_ofstream< Char > | STL class |
std::ofstream | STL class |
strict_fstream::ofstream | |
std::ostream | STL class |
mfem::ofgzstream | |
mfem::OutStream | Simple extension of std::ostream |
zstr::ofstream | |
zstr::ostream | |
iostream | |
mfem::socketstream | |
mfem::osockstream | |
mfem::isockstream | |
mfem::IterativeSolverMonitor | Abstract base class for an iterative solver monitor |
mfem::ResidualBCMonitor | Monitor that checks whether the residual is zero at a given set of dofs |
mfem::BlockArray< T >::iterator_base< cA, cT > | |
mfem::BlockArray< T >::iterator_base< BlockArray, T > | |
mfem::BlockArray< T >::iterator | |
mfem::HashTable< T >::iterator | |
mfem::BlockArray< T >::iterator_base< const BlockArray, const T > | |
mfem::BlockArray< T >::const_iterator | |
mfem::HashTable< T >::const_iterator | |
mfem::blocksolvers::IterSolveParameters | Parameters for iterative solver |
mfem::blocksolvers::DFSParameters | Parameters for the divergence free solver |
mfem::JumpScaling | |
mfem::TIntegrator< coeff_t, kernel_t >::kernel< SDim, Dim, complex_t > | |
mfem::kernels::KernelMap< K > | KernelMap class which creates an unordered_map of the Keys/Kernels |
mfem::FiniteElementSpace::key_hash | |
mfem::KnotVector | |
mfem::L2_FiniteElement< G, P > | |
mfem::L2_FiniteElement_base< G, P, L2_FE_type, L2Pos_FE_type, DOFS, TP > | |
mfem::L2_FiniteElement_base< Geometry::CUBE, P, L2_HexahedronElement, L2Pos_HexahedronElement,(P+1)*(P+1)*(P+1), true > | |
mfem::L2_FiniteElement< Geometry::CUBE, P > | |
mfem::L2_FiniteElement_base< Geometry::SEGMENT, P, L2_SegmentElement, L2Pos_SegmentElement, P+1, true > | |
mfem::L2_FiniteElement< Geometry::SEGMENT, P > | |
mfem::L2_FiniteElement_base< Geometry::SQUARE, P, L2_QuadrilateralElement, L2Pos_QuadrilateralElement,(P+1)*(P+1), true > | |
mfem::L2_FiniteElement< Geometry::SQUARE, P > | |
mfem::L2_FiniteElement_base< Geometry::TETRAHEDRON, P, L2_TetrahedronElement, L2Pos_TetrahedronElement,((P+1)*(P+2)*(P+3))/6, false > | |
mfem::L2_FiniteElement< Geometry::TETRAHEDRON, P > | |
mfem::L2_FiniteElement_base< Geometry::TRIANGLE, P, L2_TriangleElement, L2Pos_TriangleElement,((P+1)*(P+2))/2, false > | |
mfem::L2_FiniteElement< Geometry::TRIANGLE, P > | |
LinearElasticMaterial< dim > | Linear elastic material |
mfem::LinearFormExtension | Class extending the LinearForm class to support assembly on devices |
mfem::LinearFormIntegrator | Abstract base class LinearFormIntegrator |
mfem::BoundaryFlowIntegrator | |
mfem::BoundaryLFIntegrator | Class for boundary integration L(v) := (g, v) |
mfem::BoundaryNormalLFIntegrator | Class for boundary integration \( L(v) = (g \cdot n, v) \) |
mfem::BoundaryTangentialLFIntegrator | Class for boundary integration \( L(v) = (g \cdot \tau, v) \) in 2D |
mfem::DeltaLFIntegrator | Abstract class for integrators that support delta coefficients |
mfem::DomainLFGradIntegrator | Class for domain integrator L(v) := (f, grad v) |
mfem::DomainLFIntegrator | Class for domain integration L(v) := (f, v) |
mfem::VectorDomainLFGradIntegrator | |
mfem::VectorDomainLFIntegrator | |
mfem::VectorFEDomainLFCurlIntegrator | \( (Q, curl v)_{\Omega} \) for Nedelec Elements) |
mfem::VectorFEDomainLFDivIntegrator | \( (Q, div v)_{\Omega} \) for RT Elements) |
mfem::VectorFEDomainLFIntegrator | \( (f, v)_{\Omega} \) for VectorFiniteElements (Nedelec, Raviart-Thomas) |
mfem::DGDirichletLFIntegrator | |
mfem::DGElasticityDirichletLFIntegrator | |
mfem::QuadratureLFIntegrator | |
mfem::SBM2DirichletLFIntegrator | |
mfem::SBM2NeumannLFIntegrator | |
mfem::VectorBoundaryFluxLFIntegrator | |
mfem::VectorBoundaryLFIntegrator | |
mfem::VectorFEBoundaryFluxLFIntegrator | |
mfem::VectorFEBoundaryTangentLFIntegrator | Class for boundary integration \( L(v) = (n \times f, v) \) |
mfem::VectorQuadratureLFIntegrator | |
mfem::WhiteGaussianNoiseDomainLFIntegrator | |
mfem::ListOfIntegerSets | List of integer sets |
Logger | |
mfem::Ginkgo::ResidualLogger< ValueType > | |
mfem::LORBase | Abstract base class for LORDiscretization and ParLORDiscretization classes, which construct low-order refined versions of bilinear forms |
mfem::LORDiscretization | Create and assemble a low-order refined version of a BilinearForm |
mfem::ParLORDiscretization | Create and assemble a low-order refined version of a ParBilinearForm |
mfem::MatrixCoefficient | Base class for Matrix Coefficients that optionally depend on time and space |
mfem::CrossCrossCoefficient | Matrix coefficient defined as -a k x k x, for a vector k and scalar a |
mfem::IdentityMatrixCoefficient | Constant matrix coefficient defined as the identity of dimension d |
mfem::InverseMatrixCoefficient | Matrix coefficient defined as the inverse a matrix coefficient |
mfem::MatrixArrayCoefficient | Matrix coefficient defined by a matrix of scalar coefficients. Coefficients that are not set will evaluate to zero in the vector. The coefficient is stored as a flat Array with indexing (i,j) -> i*width+j |
mfem::MatrixConstantCoefficient | A matrix coefficient that is constant in space and time |
mfem::MatrixFunctionCoefficient | A matrix coefficient with an optional scalar coefficient multiplier q. The matrix function can either be represented by a std function or a constant matrix provided when constructing this object |
mfem::MatrixProductCoefficient | Matrix coefficient defined as the product of two matrices |
mfem::MatrixRestrictedCoefficient | Derived matrix coefficient that has the value of the parent matrix coefficient where it is active and is zero otherwise |
mfem::MatrixSumCoefficient | Matrix coefficient defined as the linear combination of two matrices |
mfem::OuterProductCoefficient | Matrix coefficient defined as the outer product of two vector coefficients |
mfem::PWMatrixCoefficient | A piecewise matrix-valued coefficient with the pieces keyed off the element attribute numbers |
mfem::ScalarMatrixProductCoefficient | Matrix coefficient defined as a product of a scalar coefficient and a matrix coefficient |
mfem::SymmetricMatrixCoefficient | Base class for symmetric matrix coefficients that optionally depend on time and space |
mfem::SymmetricMatrixConstantCoefficient | A matrix coefficient that is constant in space and time |
mfem::SymmetricMatrixFunctionCoefficient | A matrix coefficient with an optional scalar coefficient multiplier q. The matrix function can either be represented by a std function or a constant matrix provided when constructing this object |
mfem::TMOPMatrixCoefficient | |
HessianCoefficient | |
HRHessianCoefficient | |
mfem::TransposeMatrixCoefficient | Matrix coefficient defined as the transpose a matrix coefficient |
mfem::MemAlloc< Elem, Num > | |
mfem::MemAlloc< mfem::STable3DNode, 1024 > | |
mfem::MemAlloc< mfem::Tetrahedron, 1024 > | |
mfem::MemAlloc< Node, 1024 > | |
mfem::MemAllocNode< Elem, Num > | |
mfem::MemAllocNode< mfem::STable3DNode, Num > | |
mfem::MemAllocNode< mfem::Tetrahedron, Num > | |
mfem::MemAllocNode< Node, Num > | |
mfem::Memory< T > | Class used by MFEM to store pointers to host and/or device memory |
mfem::Memory< Basis * > | |
mfem::Memory< bool > | |
mfem::Memory< CeedOperator > | |
mfem::Memory< char > | |
mfem::Memory< const mfem::KnotVector * > | |
mfem::Memory< const mfem::Operator * > | |
mfem::Memory< const mfem::SparseMatrix * > | |
mfem::Memory< Dist_Level_Set_Coefficient * > | |
mfem::Memory< double * > | |
mfem::Memory< double > | |
mfem::PetscMemory | Wrapper for syncing PETSc's vector memory |
mfem::Memory< FiniteElementSpace * > | |
mfem::Memory< Geometry::Type > | |
mfem::Memory< GroupId > | |
mfem::Memory< HYPRE_BigInt > | |
mfem::Memory< HYPRE_Int > | |
mfem::Memory< HYPRE_ParVector > | |
mfem::Memory< int > | |
mfem::Memory< IntegrationPoint > | |
mfem::Memory< mfem::Array< int > * > | |
mfem::Memory< mfem::BilinearForm * > | |
mfem::Memory< mfem::BilinearFormIntegrator * > | |
mfem::Memory< mfem::BlockNonlinearFormIntegrator * > | |
mfem::Memory< mfem::BlockOperator * > | |
mfem::Memory< mfem::ceed::AlgebraicInterpolation * > | |
mfem::Memory< mfem::Coefficient * > | |
mfem::Memory< mfem::Connection > | |
mfem::Memory< mfem::DeltaLFIntegrator * > | |
mfem::Memory< mfem::DenseMatrix * > | |
mfem::Memory< mfem::DofToQuad * > | |
mfem::Memory< mfem::DofTransformation * > | |
mfem::Memory< mfem::Element * > | |
mfem::Memory< mfem::Eliminator * > | |
mfem::Memory< mfem::Embedding > | |
mfem::Memory< mfem::FaceGeometricFactors * > | |
mfem::Memory< mfem::FaceQuadratureInterpolator * > | |
mfem::Memory< mfem::FiniteElementCollection * > | |
mfem::Memory< mfem::FiniteElementSpace * > | |
mfem::Memory< mfem::GeometricFactors * > | |
mfem::Memory< mfem::Geometry::Type > | |
mfem::Memory< mfem::GridFunction * > | |
mfem::Memory< mfem::IntegerSet * > | |
mfem::Memory< mfem::IntegrationPoint > | |
mfem::Memory< mfem::IntegrationRule * > | |
mfem::Memory< mfem::InterpConfig > | |
mfem::Memory< mfem::KnotVector * > | |
mfem::Memory< mfem::LinearFormIntegrator * > | |
mfem::Memory< mfem::Mesh * > | |
mfem::Memory< mfem::Mesh::FaceInfo > | |
mfem::Memory< mfem::Mesh::NCFaceInfo > | |
mfem::Memory< mfem::MeshOperator * > | |
mfem::Memory< mfem::NCInterpConfig > | |
mfem::Memory< mfem::NCMesh::Element * > | |
mfem::Memory< mfem::NCMesh::Face * > | |
mfem::Memory< mfem::NCMesh::Master > | |
mfem::Memory< mfem::NCMesh::MeshId > | |
mfem::Memory< mfem::NCMesh::Node * > | |
mfem::Memory< mfem::NCMesh::Slave > | |
mfem::Memory< mfem::NonlinearFormIntegrator * > | |
mfem::Memory< mfem::NURBSPatch * > | |
mfem::Memory< mfem::Operator * > | |
mfem::Memory< mfem::OperatorHandle * > | |
mfem::Memory< mfem::ParametricBNLFormIntegrator * > | |
mfem::Memory< mfem::ParFiniteElementSpace * > | |
mfem::Memory< mfem::ParGridFunction * > | |
mfem::Memory< mfem::ParMesh::Vert3 > | |
mfem::Memory< mfem::ParMesh::Vert4 > | |
mfem::Memory< mfem::QuadratureInterpolator * > | |
mfem::Memory< mfem::RefinedGeometry * > | |
mfem::Memory< mfem::Refinement > | |
mfem::Memory< mfem::Solver * > | |
mfem::Memory< mfem::SparseMatrix * > | |
mfem::Memory< mfem::TMOP_Integrator * > | |
mfem::Memory< mfem::TMOP_QualityMetric * > | |
mfem::Memory< mfem::TransposeOperator * > | |
mfem::Memory< mfem::Triple< int, int, int > > | |
mfem::Memory< mfem::Vector * > | |
mfem::Memory< mfem::Vertex > | |
mfem::Memory< Option > | |
mfem::Memory< p_assembled_t > | |
mfem::Memory< ParFiniteElementSpace * > | |
mfem::Memory< socketstream * > | |
mfem::Memory< T * > | |
mfem::Memory< unsigned char > | |
mfem::Memory< unsigned int > | |
mfem::MemoryIJData | |
mfem::MemoryManager | |
mfem::Mesh | |
mfem::ParMesh | Class for parallel meshes |
mfem::ParPumiMesh | Class for PUMI parallel meshes |
mfem::ParSubMesh | Subdomain representation of a topological parent in another ParMesh |
mfem::PumiMesh | Base class for PUMI meshes |
mfem::SubMesh | Subdomain representation of a topological parent in another Mesh |
mfem::NCMesh::MeshId | Identifies a vertex/edge/face in both Mesh and NCMesh |
mfem::NCMesh::Master | |
mfem::NCMesh::Slave | Nonconforming edge/face within a bigger edge/face |
mfem::MeshOperator | Serves as base for mesh manipulation classes |
mfem::CoefficientRefiner | Refinement operator to control data oscillation |
mfem::MeshOperatorSequence | |
mfem::Rebalancer | ParMesh rebalancing operator |
mfem::ThresholdDerefiner | De-refinement operator using an error threshold |
mfem::ThresholdRefiner | Mesh refinement operator using an error threshold |
mfem::MortarAssembler | This class implements the serial variational transfer between finite element spaces. Variational transfer has been shown to have better approximation properties than standard interpolation. This facilities can be used for supporting applications which require the handling of non matching meshes. For instance: General multi-physics problems, fluid structure interaction, or even visualization of average quantities within subvolumes This algorithm allows to perform quadrature in the intersection of elements of two separate and unrelated meshes. It generates quadrature rules in the intersection which allows us to integrate-with to machine precision using the mfem::MortarIntegrator interface. See https://doi.org/10.1137/15M1008361 for and in-depth explanation. At this time curved elements are not supported |
mfem::MortarIntegrator | Interface for mortar element assembly. The MortarIntegrator interface is used for performing Petrov-Galerkin finite element assembly on intersections between elements. The quadrature rules are to be generated by a cut algorithm (e.g., mfem::Cut). The quadrature rules are defined in the respective trial and test reference frames. Trial and test spaces can be associated with different element shapes (e.g., triangles and quadrilaterals) and different polynomial orders (e.g., 1 and 4). This class is designed to work in conjunction with the MFEM/moonolith module but it can be used also for other applications |
mfem::L2MortarIntegrator | Integrator for scalar finite elements \( (u, v)_{L^2(\mathcal{T}_m \cap \mathcal{T}_s)}, u \in U(\mathcal{T}_m ) and v \in V(\mathcal{T}_s ) \) |
mfem::VectorL2MortarIntegrator | Integrator for vector finite elements. Experimental. \( (u, v)_{L^2(\mathcal{T}_m \cap \mathcal{T}_s)}, u \in U(\mathcal{T}_m ) and v \in V(\mathcal{T}_s ) \) |
mfem::Mpi | A simple singleton class that calls MPI_Init() at construction and MPI_Finalize() at destruction. It also provides easy access to MPI_COMM_WORLD's rank and size |
mfem::MPI_Session | A simple convenience class based on the Mpi singleton class above. Preserved for backward compatibility. New code should use Mpi::Init() and other Mpi methods instead |
mfem::MPITypeMap< Type > | Helper struct to convert a C++ type to an MPI type |
mfem::MPITypeMap< double > | |
mfem::MPITypeMap< int > | |
mfem::MyEnergyFunctor< TDataType, TParamVector, TStateVector, state_size, param_size > | |
mfem::MyResidualFunctor< TDataType, TParamVector, TStateVector, residual_size, state_size, param_size > | |
mfem::NamedFieldsMap< T > | Lightweight adaptor over an std::map from strings to pointer to T |
mfem::NamedFieldsMap< Array< int > > | |
mfem::NamedFieldsMap< GridFunction > | |
mfem::NamedFieldsMap< QuadratureFunction > | |
mfem::navier::NavierSolver | Transient incompressible Navier Stokes solver in a split scheme formulation |
mfem::Mesh::NCFaceInfo | |
mfem::NCInterpConfig | |
mfem::NCMesh::NCList | Lists all edges/faces in the nonconforming mesh |
mfem::NCMesh | A class for non-conforming AMR. The class is not used directly by the user, rather it is an extension of the Mesh class |
mfem::ParNCMesh | A parallel extension of the NCMesh class |
NeoHookeanMaterial< dim, gradient_type > | Neo-Hookean material |
Gecko::Node | |
mfem::NonlinearFormIntegrator | This class is used to express the local action of a general nonlinear finite element operator. In addition it may provide the capability to assemble the local gradient operator and to compute the local energy |
FaceIntegrator | |
mfem::BilinearFormIntegrator | Abstract base class BilinearFormIntegrator |
mfem::ConvectionIntegrator | Alpha (q . grad u, v) |
mfem::CurlCurlIntegrator | Integrator for (curl u, curl v) for Nedelec elements |
mfem::DerivativeIntegrator | Class for integrating (Q D_i(u), v); u and v are scalars |
mfem::DGDiffusionBR2Integrator | |
mfem::DGDiffusionIntegrator | |
mfem::DGElasticityIntegrator | |
mfem::DGTraceIntegrator | |
mfem::DiffusionIntegrator | |
mfem::DiscreteInterpolator | |
mfem::CurlInterpolator | |
mfem::DivergenceInterpolator | |
mfem::GradientInterpolator | |
mfem::IdentityInterpolator | |
mfem::NormalInterpolator | |
mfem::ScalarCrossProductInterpolator | |
mfem::ScalarProductInterpolator | |
mfem::ScalarVectorProductInterpolator | |
mfem::VectorCrossProductInterpolator | |
mfem::VectorInnerProductInterpolator | |
mfem::VectorScalarProductInterpolator | |
mfem::DivDivIntegrator | (Q div u, div v) for RT elements |
mfem::ElasticityIntegrator | |
mfem::GradientIntegrator | |
mfem::GroupConvectionIntegrator | Alpha (q . grad u, v) using the "group" FE discretization |
mfem::InverseIntegrator | Integrator that inverts the matrix assembled by another integrator |
mfem::LumpedIntegrator | |
mfem::MassIntegrator | |
mfem::BoundaryMassIntegrator | |
mfem::MixedCurlIntegrator | |
mfem::MixedScalarIntegrator | |
mfem::MixedScalarCurlIntegrator | |
mfem::MixedScalarDerivativeIntegrator | |
mfem::MixedScalarDivergenceIntegrator | |
mfem::MixedScalarMassIntegrator | |
mfem::MixedScalarWeakCurlIntegrator | |
mfem::MixedScalarWeakDerivativeIntegrator | |
mfem::MixedScalarWeakGradientIntegrator | |
mfem::MixedScalarVectorIntegrator | |
mfem::MixedDirectionalDerivativeIntegrator | |
mfem::MixedDivGradIntegrator | |
mfem::MixedDotProductIntegrator | |
mfem::MixedGradDivIntegrator | |
mfem::MixedScalarCrossCurlIntegrator | |
mfem::MixedScalarCrossGradIntegrator | |
mfem::MixedScalarCrossProductIntegrator | |
mfem::MixedScalarWeakCrossProductIntegrator | |
mfem::MixedScalarWeakCurlCrossIntegrator | |
mfem::MixedScalarWeakDivergenceIntegrator | |
mfem::MixedVectorDivergenceIntegrator | |
mfem::MixedVectorProductIntegrator | |
mfem::MixedWeakGradDotIntegrator | |
mfem::MixedVectorIntegrator | |
mfem::MixedCrossCurlCurlIntegrator | |
mfem::MixedCrossCurlGradIntegrator | |
mfem::MixedCrossCurlIntegrator | |
mfem::MixedCrossGradCurlIntegrator | |
mfem::MixedCrossGradGradIntegrator | |
mfem::MixedCrossGradIntegrator | |
mfem::MixedCrossProductIntegrator | |
mfem::MixedCurlCurlIntegrator | |
mfem::MixedGradGradIntegrator | |
mfem::MixedVectorCurlIntegrator | |
mfem::MixedVectorGradientIntegrator | |
mfem::MixedVectorMassIntegrator | |
mfem::MixedVectorWeakCurlIntegrator | |
mfem::MixedVectorWeakDivergenceIntegrator | |
mfem::MixedWeakCurlCrossIntegrator | |
mfem::MixedWeakDivCrossIntegrator | |
mfem::NormalTraceJumpIntegrator | |
mfem::SBM2DirichletIntegrator | |
mfem::SBM2NeumannIntegrator | |
mfem::SumIntegrator | Integrator defining a sum of multiple Integrators |
mfem::TraceJumpIntegrator | |
mfem::TransposeIntegrator | |
mfem::ConservativeConvectionIntegrator | -alpha (u, q . grad v), negative transpose of ConvectionIntegrator |
mfem::NonconservativeDGTraceIntegrator | |
mfem::VectorCurlCurlIntegrator | |
mfem::VectorDiffusionIntegrator | |
mfem::VectorDivergenceIntegrator | |
mfem::VectorFECurlIntegrator | |
mfem::VectorFEDivergenceIntegrator | |
mfem::VectorFEMassIntegrator | |
mfem::VectorFEWeakDivergenceIntegrator | |
mfem::VectorMassIntegrator | |
mfem::HyperelasticNLFIntegrator | |
mfem::pLaplace | |
mfem::pLaplaceAD< CQVectAutoDiff > | |
mfem::pLaplaceSL< sizeres > | |
mfem::PUMPLaplacian | |
mfem::ScreenedPoisson | |
mfem::TMOP_Integrator | A TMOP integrator class based on any given TMOP_QualityMetric and TargetConstructor |
mfem::TMOPComboIntegrator | |
mfem::VectorConvectionNLFIntegrator | |
mfem::ConvectiveVectorConvectionNLFIntegrator | |
mfem::SkewSymmetricVectorConvectionNLFIntegrator | |
mfem::NoSIMDTraits< complex_t, real_t > | |
mfem::NURBSExtension | |
mfem::ParNURBSExtension | |
mfem::NURBSPatch | |
mfem::NURBSPatchMap | |
mfem::ODESolver | Abstract class for solving systems of ODEs: dx/dt = f(x,t) |
mfem::AdamsBashforthSolver | |
mfem::AB1Solver | |
mfem::AB2Solver | |
mfem::AB3Solver | |
mfem::AB4Solver | |
mfem::AB5Solver | |
mfem::AdamsMoultonSolver | |
mfem::AM0Solver | |
mfem::AM1Solver | |
mfem::AM2Solver | |
mfem::AM3Solver | |
mfem::AM4Solver | |
mfem::ARKStepSolver | Interface to ARKode's ARKStep module – additive Runge-Kutta methods |
mfem::BackwardEulerSolver | Backward Euler ODE solver. L-stable |
mfem::CVODESolver | Interface to the CVODE library – linear multi-step methods |
mfem::CVODESSolver | |
mfem::ESDIRK32Solver | |
mfem::ESDIRK33Solver | |
mfem::ExplicitRKSolver | |
mfem::RK6Solver | |
mfem::RK8Solver | |
mfem::ForwardEulerSolver | The classical forward Euler method |
mfem::GeneralizedAlphaSolver | |
mfem::ImplicitMidpointSolver | Implicit midpoint method. A-stable, not L-stable |
mfem::PetscODESolver | Abstract class for PETSc's ODE solvers |
mfem::RK2Solver | |
mfem::RK3SSPSolver | Third-order, strong stability preserving (SSP) Runge-Kutta method |
mfem::RK4Solver | The classical explicit forth-order Runge-Kutta method, RK4 |
mfem::SDIRK23Solver | |
mfem::SDIRK33Solver | |
mfem::SDIRK34Solver | |
mfem::TrapezoidalRuleSolver | |
mfem::OffsetStridedLayout1D< N1, S1 > | |
mfem::OffsetStridedLayout2D< N1, S1, N2, S2 > | |
mfem::OffsetStridedLayout3D< N1, S1, N2, S2, N3, S3 > | |
mfem::OffsetStridedLayout4D< N1, S1, N2, S2, N3, S3, N4, S4 > | |
mfem::GroupCommunicator::OpData< T > | Data structure on which we define reduce operations. The data is associated with (and the operation is performed on) one group at a time |
mfem::Operator | Abstract operator |
mfem::BilinearFormExtension | Class extending the BilinearForm class to support different AssemblyLevels |
mfem::MFBilinearFormExtension | Data and methods for matrix-free bilinear forms |
mfem::PABilinearFormExtension | Data and methods for partially-assembled bilinear forms |
mfem::EABilinearFormExtension | Data and methods for element-assembled bilinear forms |
mfem::FABilinearFormExtension | Data and methods for fully-assembled bilinear forms |
mfem::BlockNonlinearForm | A class representing a general block nonlinear operator defined on the Cartesian product of multiple FiniteElementSpaces |
mfem::ParBlockNonlinearForm | A class representing a general parallel block nonlinear operator defined on the Cartesian product of multiple ParFiniteElementSpaces |
mfem::BlockOperator | A class to handle Block systems in a matrix-free implementation |
mfem::ceed::AlgebraicInterpolation | Multigrid interpolation operator in Ceed framework |
mfem::ceed::Operator | |
mfem::ceed::MFIntegrator | |
mfem::ceed::MFConvectionIntegrator | Represent a ConvectionIntegrator with AssemblyLevel::None using libCEED |
mfem::ceed::MFDiffusionIntegrator | Represent a DiffusionIntegrator with AssemblyLevel::None using libCEED |
mfem::ceed::MFMassIntegrator | Represent a MassIntegrator with AssemblyLevel::None using libCEED |
mfem::ceed::MFVectorConvectionNLFIntegrator | |
mfem::ceed::MixedIntegrator< CeedInteg > | This class wraps a ceed::PAIntegrator or ceed::MFIntegrator to support mixed finite element spaces |
mfem::ceed::PAIntegrator | |
mfem::ceed::PAConvectionIntegrator | Represent a ConvectionIntegrator with AssemblyLevel::Partial using libCEED |
mfem::ceed::PADiffusionIntegrator | Represent a DiffusionIntegrator with AssemblyLevel::Partial using libCEED |
mfem::ceed::PAMassIntegrator | Represent a MassIntegrator with AssemblyLevel::Partial using libCEED |
mfem::ceed::PAVectorConvectionNLFIntegrator | |
mfem::ceed::MixedIntegrator< MFIntegrator > | |
mfem::ceed::MixedMFConvectionIntegrator | |
mfem::ceed::MixedMFDiffusionIntegrator | |
mfem::ceed::MixedMFMassIntegrator | |
mfem::ceed::MixedMFVectorConvectionNLIntegrator | |
mfem::ceed::MixedIntegrator< PAIntegrator > | |
mfem::ceed::MixedPAConvectionIntegrator | |
mfem::ceed::MixedPADiffusionIntegrator | |
mfem::ceed::MixedPAMassIntegrator | |
mfem::ceed::MixedPAVectorConvectionNLIntegrator | |
mfem::common::IrrotationalProjector | |
mfem::common::DivergenceFreeProjector | |
mfem::ComplexOperator | Mimic the action of a complex operator using two real operators |
mfem::ComplexDenseMatrix | Specialization of the ComplexOperator built from a pair of Dense Matrices. The purpose of this specialization is to support the inverse of a ComplexDenseMatrix and various MatMat operations See ComplexOperator documentation for more information |
mfem::ComplexHypreParMatrix | Specialization of the ComplexOperator built from a pair of HypreParMatrices |
mfem::ComplexSparseMatrix | Specialization of the ComplexOperator built from a pair of Sparse Matrices |
mfem::ConformingProlongationOperator | Auxiliary class used by ParFiniteElementSpace |
mfem::DeviceConformingProlongationOperator | Auxiliary device class used by ParFiniteElementSpace |
mfem::ConstrainedOperator | Square Operator for imposing essential boundary conditions using only the action, Mult(), of a given unconstrained Operator |
mfem::ElasticityGradientOperator | ElasticityGradientOperator is a wrapper class to pass ElasticityOperator::AssembleGradientDiagonal and ElasticityOperator::GradientMult as a separate object through NewtonSolver |
mfem::ElasticityOperator | |
mfem::ElementRestrictionOperator | Abstract base class that defines an interface for element restrictions |
mfem::ElementRestriction | Operator that converts FiniteElementSpace L-vectors to E-vectors |
mfem::L2ElementRestriction | Operator that converts L2 FiniteElementSpace L-vectors to E-vectors |
mfem::EliminationProjection | |
mfem::FaceRestriction | Base class for operators that extracts Face degrees of freedom |
mfem::H1FaceRestriction | Operator that extracts Face degrees of freedom for H1 FiniteElementSpaces |
mfem::ParNCH1FaceRestriction | Operator that extracts Face degrees of freedom for NCMesh in parallel |
mfem::L2FaceRestriction | Operator that extracts Face degrees of freedom for L2 spaces |
mfem::NCL2FaceRestriction | Operator that extracts face degrees of freedom for L2 nonconforming spaces |
mfem::ParNCL2FaceRestriction | Operator that extracts Face degrees of freedom for NCMesh in parallel |
mfem::ParL2FaceRestriction | Operator that extracts Face degrees of freedom in parallel |
mfem::ParNCL2FaceRestriction | Operator that extracts Face degrees of freedom for NCMesh in parallel |
mfem::FiniteElementSpace::DerefinementOperator | Derefinement operator, used by the friend class InterpolationGridTransfer |
mfem::FiniteElementSpace::RefinementOperator | GridFunction interpolation operator applicable after mesh refinement |
mfem::HypreParMatrix | Wrapper for hypre's ParCSR matrix class |
mfem::IdentityOperator | Identity Operator I: x -> x |
mfem::L2ProjectionGridTransfer::L2Projection | |
mfem::L2ProjectionGridTransfer::L2ProjectionH1Space | |
mfem::L2ProjectionGridTransfer::L2ProjectionL2Space | |
mfem::L2ProjectionGridTransfer::L2Prolongation | |
mfem::Matrix | Abstract data type matrix |
mfem::AbstractSparseMatrix | Abstract data type for sparse matrices |
mfem::BlockMatrix | |
mfem::SparseMatrix | Data type sparse matrix |
mfem::BilinearForm | A "square matrix" operator for the associated FE space and BLFIntegrators The sum of all the BLFIntegrators can be used form the matrix M. This class also supports other assembly levels specified via the SetAssemblyLevel() function |
mfem::ParBilinearForm | Class for parallel bilinear form |
mfem::DenseMatrix | Data type dense matrix using column-major storage |
mfem::DenseSymmetricMatrix | |
mfem::MixedBilinearForm | |
mfem::DiscreteLinearOperator | |
mfem::ParDiscreteLinearOperator | |
mfem::common::ParDiscreteInterpolationOperator | |
mfem::common::ParDiscreteCurlOperator | |
mfem::common::ParDiscreteDivOperator | |
mfem::common::ParDiscreteGradOperator | |
mfem::ParMixedBilinearForm | Class for parallel bilinear form using different test and trial FE spaces |
mfem::MixedBilinearFormExtension | Class extending the MixedBilinearForm class to support different AssemblyLevels |
mfem::PAMixedBilinearFormExtension | Data and methods for partially-assembled mixed bilinear forms |
mfem::PADiscreteLinearOperatorExtension | Partial assembly extension for DiscreteLinearOperator |
mfem::NonlinearForm | |
mfem::ParNonlinearForm | Parallel non-linear operator on the true dofs |
mfem::NonlinearFormExtension | Class extending the NonlinearForm class to support the different AssemblyLevels |
mfem::MFNonlinearFormExtension | Data and methods for unassembled nonlinear forms |
mfem::PANonlinearFormExtension | Data and methods for partially-assembled nonlinear forms |
mfem::ParametricBNLForm | A class representing a general parametric block nonlinear operator defined on the Cartesian product of multiple FiniteElementSpaces |
mfem::ParParametricBNLForm | A class representing a general parametric parallel block nonlinear operator defined on the Cartesian product of multiple ParFiniteElementSpaces |
mfem::PetscParMatrix | Wrapper for PETSc's matrix class |
mfem::PRefinementTransferOperator | Matrix-free transfer operator between finite element spaces on the same mesh |
mfem::ProductOperator | General product operator: x -> (A*B)(x) = A(B(x)) |
mfem::RAPOperator | The operator x -> R*A*P*x constructed through the actions of R^T, A and P |
mfem::RectangularConstrainedOperator | Rectangular Operator for imposing essential boundary conditions on the input space using only the action, Mult(), of a given unconstrained Operator |
mfem::ScaledOperator | Scaled Operator B: x -> a A(x) |
mfem::Solver | Base class for solvers |
mfem::AmgXSolver | |
mfem::AuxSpaceSmoother | |
mfem::BlockDiagonalPreconditioner | A class to handle Block diagonal preconditioners in a matrix-free implementation |
mfem::BlockILU | |
mfem::BlockLowerTriangularPreconditioner | A class to handle Block lower triangular preconditioners in a matrix-free implementation |
mfem::blocksolvers::BBTSolver | |
mfem::blocksolvers::DarcySolver | Abstract solver class for Darcy's flow |
mfem::blocksolvers::BDPMinresSolver | Wrapper for the block-diagonal-preconditioned MINRES defined in ex5p.cpp |
mfem::blocksolvers::DivFreeSolver | |
mfem::blocksolvers::LocalSolver | Solver for local problems in SaddleSchwarzSmoother |
mfem::blocksolvers::SaddleSchwarzSmoother | |
mfem::ceed::AlgebraicSolver | Wrapper for AlgebraicMultigrid object |
mfem::ComplexUMFPackSolver | Interface with UMFPack solver specialized for ComplexSparseMatrix This approach avoids forming a monolithic SparseMatrix which leads to increased memory and flops |
mfem::CPardisoSolver | MKL Parallel Direct Sparse Solver for Clusters |
mfem::DGMassInverse | Solver for the discontinuous Galerkin mass matrix |
mfem::DirectSubBlockSolver | Block diagonal solver for A, each block is inverted by direct solver |
mfem::blocksolvers::SymDirectSubBlockSolver | Block diagonal solver for symmetric A, each block is inverted by direct solver |
mfem::ElasticityDiagonalPreconditioner | ElasticityDiagonalPreconditioner acts as a matrix-free preconditioner for ElasticityOperator |
mfem::GeneralAMS | Perform AMS cycle with generic Operator objects |
mfem::Ginkgo::GinkgoIterativeSolver | |
mfem::Ginkgo::EnableGinkgoSolver< gko::solver::Bicgstab< double > > | |
mfem::Ginkgo::BICGSTABSolver | |
mfem::Ginkgo::EnableGinkgoSolver< gko::solver::CbGmres< double > > | |
mfem::Ginkgo::CBGMRESSolver | |
mfem::Ginkgo::EnableGinkgoSolver< gko::solver::Cg< double > > | |
mfem::Ginkgo::CGSolver | |
mfem::Ginkgo::EnableGinkgoSolver< gko::solver::Cgs< double > > | |
mfem::Ginkgo::CGSSolver | |
mfem::Ginkgo::EnableGinkgoSolver< gko::solver::Fcg< double > > | |
mfem::Ginkgo::FCGSolver | |
mfem::Ginkgo::EnableGinkgoSolver< gko::solver::Gmres< double > > | |
mfem::Ginkgo::GMRESSolver | |
mfem::Ginkgo::EnableGinkgoSolver< gko::solver::Ir< double > > | |
mfem::Ginkgo::IRSolver | |
mfem::Ginkgo::EnableGinkgoSolver< SolverType > | |
mfem::Ginkgo::GinkgoPreconditioner | |
mfem::Ginkgo::IcIsaiPreconditioner | |
mfem::Ginkgo::IcPreconditioner | |
mfem::Ginkgo::IluIsaiPreconditioner | |
mfem::Ginkgo::IluPreconditioner | |
mfem::Ginkgo::JacobiPreconditioner | |
mfem::Ginkgo::MFEMPreconditioner | |
mfem::HypreSmoother | Parallel smoothers in hypre |
mfem::HypreSolver | Abstract class for hypre's solvers and preconditioners |
mfem::HypreADS | The Auxiliary-space Divergence Solver in hypre |
mfem::HypreAMS | The Auxiliary-space Maxwell Solver in hypre |
mfem::HypreBoomerAMG | The BoomerAMG solver in hypre |
mfem::HypreDiagScale | Jacobi preconditioner in hypre |
mfem::HypreEuclid | |
mfem::HypreFGMRES | Flexible GMRES solver in hypre |
mfem::HypreGMRES | GMRES solver in hypre |
mfem::HypreIdentity | The identity operator as a hypre solver |
mfem::HypreILU | Wrapper for Hypre's native parallel ILU preconditioner |
mfem::HypreParaSails | The ParaSails preconditioner in hypre |
mfem::HyprePCG | PCG solver in hypre |
mfem::HypreTriSolve | |
mfem::IterativeSolver | Abstract base class for iterative solver |
mfem::BiCGSTABSolver | BiCGSTAB method |
mfem::CGSolver | Conjugate gradient method |
mfem::ConstrainedSolver | An abstract class to solve the constrained system \( Ax = f \) subject to the constraint \( B x = r \) |
mfem::EliminationSolver | Solve constrained system by eliminating the constraint; see ConstrainedSolver |
mfem::EliminationCGSolver | |
mfem::EliminationGMRESSolver | |
mfem::PenaltyConstrainedSolver | Solve constrained system with penalty method; see ConstrainedSolver |
mfem::PenaltyGMRESSolver | |
mfem::PenaltyPCGSolver | |
mfem::SchurConstrainedSolver | Solve constrained system by solving original mixed system; see ConstrainedSolver |
mfem::SchurConstrainedHypreSolver | Basic saddle-point solver with assembled blocks (ie, the operators are assembled HypreParMatrix objects.) |
mfem::FGMRESSolver | FGMRES method |
mfem::GMRESSolver | GMRES method |
mfem::MINRESSolver | MINRES method |
mfem::NewtonSolver | Newton's method for solving F(x)=b for a given operator F |
mfem::KINSolver | Interface to the KINSOL library – nonlinear solver methods |
mfem::LBFGSSolver | |
mfem::TMOPNewtonSolver | |
mfem::OptimizationSolver | Abstract solver for OptimizationProblems |
mfem::HiopNlpOptimizer | Adapts the HiOp functionality to the MFEM OptimizationSolver interface |
mfem::SLBQPOptimizer | |
mfem::SLISolver | Stationary linear iteration: x <- x + B (b - A x) |
mfem::KLUSolver | Direct sparse solver using KLU |
mfem::LORSolver< SolverType > | Represents a solver of type SolverType created using the low-order refined version of the given BilinearForm or ParBilinearForm |
mfem::LORSolver< HypreADS > | |
mfem::LORSolver< HypreAMS > | |
mfem::MatrixFreeAMS | An auxiliary Maxwell solver for a high-order curl-curl system without high-order assembly |
mfem::MatrixFreeAuxiliarySpace | Auxiliary space solvers for MatrixFreeAMS preconditioner |
mfem::MatrixInverse | Abstract data type for matrix inverse |
mfem::DenseMatrixInverse | |
mfem::SparseSmoother | |
mfem::DSmoother | Data type for scaled Jacobi-type smoother of sparse matrix |
mfem::GSSmoother | Data type for Gauss-Seidel smoother of sparse matrix |
mfem::Multigrid | Multigrid solver class |
mfem::GeometricMultigrid | Geometric multigrid associated with a hierarchy of finite element spaces |
mfem::ceed::AlgebraicMultigrid | Extension of Multigrid object to algebraically generated coarse spaces |
mfem::MUMPSSolver | MUMPS: A Parallel Sparse Direct Solver |
mfem::OperatorChebyshevSmoother | Chebyshev accelerated smoothing with given vector, no matrix necessary |
mfem::OperatorJacobiSmoother | Jacobi smoothing for a given bilinear form (no matrix necessary) |
mfem::OrthoSolver | Solver wrapper which orthogonalizes the input and output vector |
mfem::PetscLinearSolver | Abstract class for PETSc's linear solvers |
mfem::PetscPCGSolver | |
mfem::PetscNonlinearSolver | Abstract class for PETSc's nonlinear solvers |
mfem::PetscPreconditioner | Abstract class for PETSc's preconditioners |
mfem::PetscBDDCSolver | |
mfem::PetscFieldSplitSolver | |
mfem::PetscH2Solver | |
mfem::ProductSolver | |
mfem::STRUMPACKSolver | |
mfem::SuperLUSolver | |
mfem::UMFPackSolver | Direct sparse solver using UMFPACK |
mfem::STRUMPACKRowLocMatrix | |
mfem::SuperLURowLocMatrix | |
mfem::TBilinearForm< meshType, solFESpace, IR, IntegratorType, solVecLayout_t, complex_t, real_t, impl_traits_t > | Templated bilinear form class, cf. bilinearform.?pp |
mfem::TensorProductPRefinementTransferOperator | Matrix-free transfer operator between finite element spaces on the same mesh exploiting the tensor product structure of the finite elements |
mfem::TimeDependentOperator | Base abstract class for first order time dependent operators |
FE_Evolution | |
FE_Evolution | |
FE_Evolution | |
FE_Evolution | |
FE_Evolution | |
FE_Evolution | |
FE_Evolution | |
FE_Evolution | |
mfem::AdvectionOper | |
mfem::electromagnetics::MagneticDiffusionEOperator | |
mfem::electromagnetics::MaxwellSolver | |
mfem::ParAdvectorCGOper | Performs a single remap advection step in parallel |
mfem::SecondOrderTimeDependentOperator | Base abstract class for second order time dependent operators |
mfem::SerialAdvectorCGOper | Performs a single remap advection step in serial |
mfem::TimeDependentAdjointOperator | |
mfem::TransferOperator | Matrix-free transfer operator between finite element spaces |
mfem::TransposeOperator | The transpose of a given operator. Switches the roles of the methods Mult() and MultTranspose() |
mfem::TripleProductOperator | General triple product operator x -> A*B*C*x, with ownership of the factors |
mfem::TrueTransferOperator | Matrix-free transfer operator between finite element spaces working on true degrees of freedom |
mfem::OperatorHandle | Pointer to an Operator of a specified type |
mfem::ceed::OperatorInfo | |
mfem::OptimizationProblem | |
mfem::OptionsParser | |
mfem::Ordering | The ordering method used when the number of unknowns per mesh node (vector dimension) is bigger than 1 |
mfem::TMassKernel< SDim, Dim, complex_t >::p_asm_data< qpts > | Partially assembled data type for one element with the given number of quadrature points. This type is used in partial assembly, and partially assembled action |
mfem::TDiffusionKernel< 1, 1, complex_t >::p_asm_data< qpts > | Partially assembled data type for one element with the given number of quadrature points. This type is used in partial assembly, and partially assembled action |
mfem::TDiffusionKernel< 2, 2, complex_t >::p_asm_data< qpts > | Partially assembled data type for one element with the given number of quadrature points. This type is used in partial assembly, and partially assembled action. Stores one symmetric 2 x 2 matrix per point |
mfem::TDiffusionKernel< 3, 3, complex_t >::p_asm_data< qpts > | Partially assembled data type for one element with the given number of quadrature points. This type is used in partial assembly, and partially assembled action. Stores one symmetric 3 x 3 matrix per point |
mfem::Pair< A, B > | A pair of objects |
mfem::ParametricBNLFormIntegrator | |
mfem::ParametricLinearDiffusion | |
mfem::ParMortarAssembler | This class implements the parallel variational transfer between finite element spaces. Variational transfer has been shown to have better approximation properties than standard interpolation. This facilities can be used for supporting applications which require the handling of non matching meshes. For instance: General multi-physics problems, fluid structure interaction, or even visualization of average quantities within subvolumes. This particular code is also used with LLNL for large scale multilevel Monte Carlo simulations. This algorithm allows to perform quadrature in the intersection of elements of two separate, unrelated, and arbitrarily distributed meshes. It generates quadrature rules in the intersection which allows us to integrate with to machine precision using the mfem::MortarIntegrator interface. See https://doi.org/10.1137/15M1008361 for and in-depth explanation. At this time curved elements are not supported. Convex non-affine elements are partially supported, however, high order (>3) finite element discretizations or nonlinear geometric transformations might generate undesired oscillations. Discontinuous fields in general can only be mapped to order 0 destination fields. For such cases localized versions of the projection will have to be developed |
mfem::ParSesquilinearForm | |
mfem::ParTransferMap | ParTransferMap represents a mapping of degrees of freedom from a source ParGridFunction to a destination ParGridFunction |
mfem::PDEFilter | |
mfem::PetscBCHandler | Helper class for handling essential boundary conditions |
mfem::PetscBDDCSolverParams | Auxiliary class for BDDC customization |
mfem::PetscPreconditionerFactory | |
mfem::PetscSolver | Abstract class for PETSc's solvers |
mfem::PetscLinearSolver | Abstract class for PETSc's linear solvers |
mfem::PetscNonlinearSolver | Abstract class for PETSc's nonlinear solvers |
mfem::PetscODESolver | Abstract class for PETSc's ODE solvers |
mfem::PetscPreconditioner | Abstract class for PETSc's preconditioners |
mfem::PetscSolverMonitor | Abstract class for monitoring PETSc's solvers |
mfem::NCMesh::Point | |
mfem::NCMesh::PointMatrix | The PointMatrix stores the coordinates of the slave face using the master face coordinate as reference |
mfem::Poly_1D | Class for computing 1D special polynomials and their associated basis functions |
mfem::PowerMethod | PowerMethod helper class to estimate the largest eigenvalue of an operator using the iterative power method |
mfem::navier::PresDirichletBC_T | Container for a Dirichlet boundary condition of the pressure field |
mfem::IterativeSolver::PrintLevel | Settings for the output behavior of the IterativeSolver |
Gecko::Progress | |
mfem::QFunctionAutoDiff< TFunctor, state_size, param_size > | |
mfem::Quadrature1D | A class container for 1D quadrature type constants |
mfem::QuadratureFunctions1D | A Class that defines 1-D numerical quadrature rules on [0,1] |
mfem::QuadratureInterpolator | A class that performs interpolation from an E-vector to quadrature point values and/or derivatives (Q-vectors) |
mfem::QuadratureSpaceBase | Abstract base class for QuadratureSpace and FaceQuadratureSpace |
mfem::FaceQuadratureSpace | Class representing the storage layout of a FaceQuadratureFunction |
mfem::QuadratureSpace | Class representing the storage layout of a QuadratureFunction |
mfem::QVectorFuncAutoDiff< TFunctor, vector_size, state_size, param_size > | |
mfem::RajaCuWrap< Dim > | |
mfem::RajaCuWrap< 1 > | |
mfem::RajaCuWrap< 2 > | |
mfem::RajaCuWrap< 3 > | |
mfem::RajaHipWrap< Dim > | |
mfem::RajaHipWrap< 1 > | |
mfem::RajaHipWrap< 2 > | |
mfem::RajaHipWrap< 3 > | |
mfem::RefinedGeometry | |
mfem::Refinement | |
mfem::ceed::RestrHash | |
mfem::TElementTransformation< Mesh_t, IR, real_t >::Result< EvalOps, impl_traits_t > | Templated struct Result, used to specify the type result that is computed by the TElementTransformation::Eval() method and stored in this structure |
mfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 0, it_t > | |
mfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 1, it_t > | |
mfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 10, it_t > | |
mfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 2, it_t > | |
mfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 3, it_t > | |
mfem::TElementTransformation< Mesh_t, IR, real_t >::Result< 6, it_t > | |
mfem::IntRuleCoefficient< IR, coeff_t, impl_traits_t >::Aux< true, dummy >::result_t | |
RiemannSolver | |
mfem::DSTable::RowIterator | |
mfem::TBilinearForm< meshType, solFESpace, IR, IntegratorType, solVecLayout_t, complex_t, real_t, impl_traits_t >::S_spec | Contains matrix sizes, type of kernel (ElementMatrix is templated on a kernel, e.g. ElementMatrix::Compute may be AssembleGradGrad()) |
mfem::ScalarLayout | |
mfem::ScalarOps< scalar_t > | Auxiliary class used as the default for the second template parameter in the classes InvariantsEvaluator2D and InvariantsEvaluator3D |
mfem::SecondOrderODESolver | Abstract class for solving systems of ODEs: d2x/dt2 = f(x,dx/dt,t) |
mfem::GeneralizedAlpha2Solver | |
mfem::AverageAccelerationSolver | The classical midpoint method |
mfem::HHTAlphaSolver | |
mfem::WBZAlphaSolver | |
mfem::NewmarkSolver | |
mfem::CentralDifferenceSolver | |
mfem::FoxGoodwinSolver | |
mfem::LinearAccelerationSolver | |
mfem::SesquilinearForm | |
mfem::ShapeEvaluator_base< FE, IR, TP, real_t > | Shape evaluators – values of basis functions on the reference element |
mfem::ShapeEvaluator< FE_type, IR, real_t > | |
mfem::ShapeEvaluator< meshFE_type, IR, real_t > | |
mfem::ShapeEvaluator< solFE_type, IR, real_t > | |
mfem::ShapeEvaluator_base< FE, IR, false, real_t > | ShapeEvaluator without tensor-product structure |
mfem::ShapeEvaluator_base< FE, IR, FE::tensor_prod &&IR::tensor_prod, real_t > | |
mfem::ShapeEvaluator< FE, IR, real_t > | General ShapeEvaluator for any scalar FE type (L2 or H1) |
mfem::ShapeEvaluator_base< FE_type, IR, FE_type::tensor_prod &&IR::tensor_prod, real_t > | |
mfem::ShapeEvaluator_base< meshFE_type, IR, meshFE_type::tensor_prod &&IR::tensor_prod, real_t > | |
mfem::ShapeEvaluator_base< solFE_type, IR, solFE_type::tensor_prod &&IR::tensor_prod, real_t > | |
mfem::ShiftedFaceMarker | |
mfem::SIASolver | |
mfem::SIA1Solver | First Order Symplectic Integration Algorithm |
mfem::SIA2Solver | Second Order Symplectic Integration Algorithm |
mfem::SIAVSolver | Variable order Symplectic Integration Algorithm (orders 1-4) |
mfem::SlepcEigenSolver | |
mfem::socketserver | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::Spec< kernel_t, impl_traits_t > | |
mfem::STable3D | Symmetric 3D Table stored as an array of rows each of which has a stack of column, floor, number nodes. The number of the node is assigned by counting the nodes from zero as they are pushed into the table. Diagonals of any kind are not allowed so the row, column and floor must all be different for each node. Only one node is stored for all 6 symmetric entries that are indexable by unique triplets of row, column, and floor |
mfem::STable3DNode | |
mfem::Stack< Elem, Num > | |
mfem::Stack< Elem *, Num > | |
mfem::Stack< mfem::STable3DNode *, Num > | |
mfem::Stack< mfem::Tetrahedron *, Num > | |
mfem::Stack< Node *, Num > | |
mfem::StackPart< Elem, Num > | |
mfem::StackPart< Elem *, Num > | |
mfem::StackPart< mfem::STable3DNode *, Num > | |
mfem::StackPart< mfem::Tetrahedron *, Num > | |
mfem::StackPart< Node *, Num > | |
strict_fstream::detail::static_method_holder | |
mfem::StaticCondensation | |
mfem::StopWatch | Timing object |
streambuf | |
mfem::socketbuf | |
mfem::GnuTLS_socketbuf | |
zstr::istreambuf | |
zstr::ostreambuf | |
zstr::detail::strict_fstream_holder< FStream_Type > | |
zstr::detail::strict_fstream_holder< strict_fstream::ifstream > | |
mfem::ifgzstream | |
zstr::ifstream | |
zstr::detail::strict_fstream_holder< strict_fstream::ofstream > | |
mfem::ofgzstream | |
zstr::ofstream | |
mfem::StridedLayout1D< N1, S1 > | |
mfem::StridedLayout2D< N1, S1, N2, S2 > | |
mfem::StridedLayout2D< N1, 1, N2, N1 > | |
mfem::ColumnMajorLayout2D< N1, N2 > | |
mfem::StridedLayout3D< N1, S1, N2, S2, N3, S3 > | |
mfem::StridedLayout3D< N1, 1, N2, N1, N3, N1 *N2 > | |
mfem::ColumnMajorLayout3D< N1, N2, N3 > | |
mfem::StridedLayout4D< N1, S1, N2, S2, N3, S3, N4, S4 > | |
mfem::StridedLayout4D< N1, 1, N2, N1, N3, N1 *N2, N4, N1 *N2 *N3 > | |
mfem::ColumnMajorLayout4D< N1, N2, N3, N4 > | |
mfem::Sundials | Singleton class for SUNContext and SundialsMemHelper objects |
mfem::SundialsMemHelper | |
mfem::SundialsSolver | Base class for interfacing with SUNDIALS packages |
mfem::ARKStepSolver | Interface to ARKode's ARKStep module – additive Runge-Kutta methods |
mfem::CVODESolver | Interface to the CVODE library – linear multi-step methods |
mfem::KINSolver | Interface to the KINSOL library – nonlinear solver methods |
mfem::electromagnetics::SurfaceCurrent | |
mfem::TBilinearForm< meshType, solFESpace, IR, IntegratorType, solVecLayout_t, complex_t, real_t, impl_traits_t >::T_result | |
mfem::Table | |
mfem::STable | |
mfem::TargetConstructor | Base class representing target-matrix construction algorithms for mesh optimization via the target-matrix optimization paradigm (TMOP) |
mfem::AnalyticAdaptTC | |
mfem::DiscreteAdaptTC | |
mfem::TAutoDiffDenseMatrix< dtype > | Templated dense matrix data type |
mfem::TAutoDiffVector< dtype > | Templated vector data type |
mfem::TCoefficient | Templated coefficient classes, cf. coefficient.?pp |
mfem::TConstantCoefficient< complex_t > | |
mfem::TFunctionCoefficient< Func, complex_t > | Function coefficient |
mfem::TGridFunctionCoefficient< FieldEval > | GridFunction coefficient class |
mfem::TPiecewiseConstCoefficient< complex_t > | |
mfem::TDiffusionKernel< SDim, Dim, complex_t > | Diffusion kernel |
mfem::TDiffusionKernel< 1, 1, complex_t > | Diffusion kernel in 1D |
mfem::TDiffusionKernel< 2, 2, complex_t > | Diffusion kernel in 2D |
mfem::TDiffusionKernel< 3, 3, complex_t > | Diffusion kernel in 3D |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::TElementMatrix< InOps, OutOps, it_t > | This struct implements element matrix computation for some combinations of input (InOps) and output (OutOps) operations |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::TElementMatrix< 1, 1, it_t > | |
mfem::FieldEvaluator< FESpace_t, VecLayout_t, IR, complex_t, real_t >::TElementMatrix< 2, 2, it_t > | |
mfem::TElementTransformation< Mesh_t, IR, real_t > | Element transformation class, templated on a mesh type and an integration rule. It is constructed from a mesh (e.g. class TMesh) and shape evaluator (e.g. class ShapeEvaluator) objects. Allows computation of physical coordinates and Jacobian matrices corresponding to the reference integration points. The desired result is specified through the template subclass Result and stored in an object of the same type |
mfem::TensorBasisElement | |
mfem::NodalTensorFiniteElement | |
mfem::PositiveTensorFiniteElement | |
mfem::VectorTensorFiniteElement | |
mfem::TensorInd< N, Dim, T, Args > | A Class to compute the real index from the multi-indices of a tensor |
mfem::TensorInd< Dim, Dim, T, Args...> | |
mfem::electromagnetics::TeslaSolver | |
mfem::TFiniteElementSpace_simple< FE, IndexType > | |
mfem::TFiniteElementSpace_simple< FE, DGIndexer< FE > > | |
mfem::L2_FiniteElementSpace< FE > | |
mfem::TFiniteElementSpace_simple< FE, ElementDofIndexer< FE > > | |
mfem::H1_FiniteElementSpace< FE > | |
mfem::TIntegrationRule< G, Order, real_t > | |
mfem::TIntegrator< coeff_t, kernel_t > | The Integrator class combines a kernel and a coefficient |
mfem::TMassKernel< SDim, Dim, complex_t > | Mass kernel |
mfem::TMesh< FESpace, nodeLayout > | |
mfem::TMOP_LimiterFunction | Base class for limiting functions to be used in class TMOP_Integrator |
mfem::TMOP_QuadraticLimiter | Default limiter function in TMOP_Integrator |
mfem::TMOPHRSolver | |
mfem::NCMesh::TmpVertex | |
mfem::TProductIntegrationRule_base< Dim, Q, real_t > | |
mfem::TProductIntegrationRule< Dim, Q, Order, real_t > | |
mfem::TProductIntegrationRule< Dim, Q, 2 *Q-1, real_t > | |
mfem::GaussIntegrationRule< 1, Order/2+1, real_t > | |
mfem::TIntegrationRule< Geometry::SEGMENT, Order, real_t > | |
mfem::GaussIntegrationRule< 2, Order/2+1, real_t > | |
mfem::TIntegrationRule< Geometry::SQUARE, Order, real_t > | |
mfem::GaussIntegrationRule< 3, Order/2+1, real_t > | |
mfem::TIntegrationRule< Geometry::CUBE, Order, real_t > | |
mfem::GaussIntegrationRule< Dim, Q, real_t > | |
mfem::TProductIntegrationRule_base< 1, Q, real_t > | |
mfem::TProductIntegrationRule_base< 2, Q, real_t > | |
mfem::TProductIntegrationRule_base< 3, Q, real_t > | |
mfem::TProductShapeEvaluator< Dim, DOF, NIP, real_t > | |
mfem::TProductShapeEvaluator< 1, DOF, NIP, real_t > | ShapeEvaluator with 1D tensor-product structure |
mfem::TProductShapeEvaluator< 2, DOF, NIP, real_t > | ShapeEvaluator with 2D tensor-product structure |
mfem::TProductShapeEvaluator< 3, DOF, NIP, real_t > | ShapeEvaluator with 3D tensor-product structure |
mfem::TProductShapeEvaluator< FE::dim, FE::dofs_1d, IR::qpts_1d, real_t > | |
mfem::ShapeEvaluator_base< FE, IR, true, real_t > | ShapeEvaluator with tensor-product structure in any dimension |
mfem::TransferMap | TransferMap represents a mapping of degrees of freedom from a source GridFunction to a destination GridFunction |
mfem::Triple< A, B, C > | A triple of objects |
mfem::Triple< int, int, int > | |
mfem::TVector< S, data_t, align > | |
mfem::TMatrix< DOF, NIP, real_t, true > | |
mfem::TMatrix< NIP, DOF, real_t, true > | |
mfem::TMatrix< qpts, 1, complex_type > | |
mfem::TMatrix< qpts, 1, typename IR::real_type > | |
mfem::TTensor3< DOF, NIP, DIM, real_t > | |
mfem::TTensor3< dofs, sdim, 1, real_t > | |
mfem::TTensor3< dofs, sdim, ne, vreal_t > | |
mfem::TTensor3< dofs, vdim, ne, vcomplex_t, true > | |
mfem::TTensor3< NIP, DIM, DOF, real_t, true > | |
mfem::TTensor3< qpts, sdim, NE, vreal_t, true > | |
mfem::TTensor3< qpts, sdim, ne, vreal_t, true > | |
mfem::TTensor3< qpts, vdim, ne, vcomplex_t > | |
mfem::TTensor3< qpts, vdim, ne, vcomplex_t, true > | |
mfem::TTensor4< qpts, dim, sdim, ne, vreal_t, true > | |
mfem::TTensor4< qpts, dim, vdim, ne, vcomplex_t > | |
mfem::TVector< N1 *N2 *N3 *N4, data_t, align > | |
mfem::TTensor4< N1, N2, N3, N4, data_t, align > | |
mfem::TVector< N1 *N2 *N3 *N4, vcomplex_t, false > | |
mfem::TVector< N1 *N2 *N3 *N4, vreal_t, align > | |
mfem::TVector< N1 *N2 *N3, data_t, align > | |
mfem::TTensor3< N1, N2, N3, data_t, align > | |
mfem::TVector< N1 *N2 *N3, real_t, align > | |
mfem::TVector< N1 *N2 *N3, real_t, false > | |
mfem::TVector< N1 *N2 *N3, vcomplex_t, align > | |
mfem::TVector< N1 *N2 *N3, vcomplex_t, false > | |
mfem::TVector< N1 *N2 *N3, vreal_t, align > | |
mfem::TVector< N1 *N2 *N3, vreal_t, false > | |
mfem::TVector< N1 *N2, complex_type, false > | |
mfem::TVector< N1 *N2, data_t, align > | |
mfem::TMatrix< N1, N2, data_t, align > | |
mfem::TVector< N1 *N2, real_t, align > | |
mfem::TVector< N1 *N2, typename IR::real_type, false > | |
mfem::TVector< Q, real_t > | |
mfem::TVector< qpts, real_t > | |
mfem::SubMeshUtils::UniqueIndexGenerator | Convenience object to create unique indices |
mfem::VarMessage< Tag > | Variable-length MPI message containing unspecific binary data |
mfem::ParNCMesh::ElementValueMessage< char, false, 289 > | |
mfem::ParNCMesh::NeighborRefinementMessage | |
mfem::ParNCMesh::ElementValueMessage< int, false, 156 > | |
mfem::ParNCMesh::NeighborElementRankMessage | |
mfem::ParNCMesh::ElementValueMessage< int, false, 290 > | |
mfem::ParNCMesh::NeighborDerefinementMessage | |
mfem::ParNCMesh::ElementValueMessage< int, true, 157 > | |
mfem::ParNCMesh::RebalanceMessage | |
mfem::ParNCMesh::ElementValueMessage< ValueType, RefTypes, Tag > | |
mfem::VarMessage< 158 > | |
mfem::ParNCMesh::RebalanceDofMessage | |
mfem::VarMessage< 314 > | |
mfem::Vector | Vector data type |
mfem::BlockVector | A class to handle Vectors in a block fashion |
mfem::CoefficientVector | Class to represent a coefficient evaluated at quadrature points |
mfem::ComplexGridFunction | |
mfem::ComplexLinearForm | |
mfem::GridFunction | Class for grid function - Vector with associated FE space |
mfem::GridFunctionPumi | Class for PUMI grid functions |
mfem::ParGridFunction | Class for parallel grid function |
mfem::HypreParVector | Wrapper for hypre's parallel vector class |
mfem::LinearForm | Vector with associated FE space and LinearFormIntegrators |
mfem::ParLinearForm | Class for parallel linear form |
mfem::ParComplexGridFunction | |
mfem::ParComplexLinearForm | |
mfem::PetscParVector | |
mfem::QuadratureFunction | Represents values or vectors of values at quadrature points on a mesh |
mfem::SundialsNVector | Vector interface for SUNDIALS N_Vectors |
mfem::VectorCoefficient | Base class for vector Coefficients that optionally depend on time and space |
Dist_Vector_Coefficient | Distance vector to the zero level-set |
mfem::common::KershawTransformation | |
mfem::CurlGridFunctionCoefficient | Vector coefficient defined as the Curl of a vector GridFunction |
mfem::GradientGridFunctionCoefficient | Vector coefficient defined as the Gradient of a scalar GridFunction |
mfem::LevelSetNormalGradCoeff | |
mfem::MatrixVectorProductCoefficient | Vector coefficient defined as a product of a matrix coefficient and a vector coefficient |
mfem::NodeExtrudeCoefficient | Class used to extrude the nodes of a mesh |
mfem::NormalizedGradCoefficient | |
mfem::NormalizedVectorCoefficient | Vector coefficient defined as a normalized vector field (returns v/|v|) |
mfem::PWVectorCoefficient | A piecewise vector-valued coefficient with the pieces keyed off the element attribute numbers |
mfem::ScalarVectorProductCoefficient | Vector coefficient defined as a product of scalar and vector coefficients |
mfem::ShiftedVectorFunctionCoefficient | |
mfem::VectorArrayCoefficient | Vector coefficient defined by an array of scalar coefficients. Coefficients that are not set will evaluate to zero in the vector. This object takes ownership of the array of coefficients inside it and deletes them at object destruction |
mfem::VectorConstantCoefficient | Vector coefficient that is constant in space and time |
mfem::VectorCrossProductCoefficient | Vector coefficient defined as a cross product of two vectors |
mfem::VectorDeltaCoefficient | Vector coefficient defined by a scalar DeltaCoefficient and a constant vector direction |
mfem::VectorFunctionCoefficient | A general vector function coefficient |
mfem::VectorGridFunctionCoefficient | Vector coefficient defined by a vector GridFunction |
mfem::VectorQuadratureFunctionCoefficient | Vector quadrature function coefficient which requires that the quadrature rules used for this vector coefficient be the same as those that live within the supplied QuadratureFunction |
mfem::VectorRestrictedCoefficient | Derived vector coefficient that has the value of the parent vector where it is active and is zero otherwise |
mfem::VectorSumCoefficient | Vector coefficient defined as the linear combination of two vectors |
mfem::VectorFuncAutoDiff< vector_size, state_size, param_size > | |
mfem::VectorLayout< Ord, NumComp > | |
mfem::navier::VelDirichletBC_T | Container for a Dirichlet boundary condition of the velocity field |
mfem::ParMesh::Vert3 | |
mfem::ParMesh::Vert4 | |
mfem::Vertex | Data type for vertex |
mfem::Geometry::Constants< Geometry::TETRAHEDRON >::VertToVert | |
mfem::Geometry::Constants< Geometry::PYRAMID >::VertToVert | |
mfem::Geometry::Constants< Geometry::PRISM >::VertToVert | |
mfem::Geometry::Constants< Geometry::TRIANGLE >::VertToVert | |
mfem::Geometry::Constants< Geometry::SQUARE >::VertToVert | |
mfem::Geometry::Constants< Geometry::CUBE >::VertToVert | |
mfem::VisItFieldInfo | Helper class for VisIt visualization data |
mfem::electromagnetics::VoltaSolver | |
mfem::VTKGeometry | Helper class for converting between MFEM and VTK geometry types |
Gecko::WeightedValue | |
Gecko::WeightedSum | |
z_stream | |
zstr::detail::z_stream_wrapper | |