MFEM  v4.5.2 Finite element discretization library
sbm_aux.hpp File Reference

Go to the source code of this file.

## Classes

class  Dist_Level_Set_Coefficient
Level set coefficient: +1 inside the true domain, -1 outside. More...

class  Combo_Level_Set_Coefficient
Combination of level sets: +1 inside the true domain, -1 outside. More...

class  Dist_Vector_Coefficient
Distance vector to the zero level-set. More...

## Functions

double point_inside_trigon (const Vector px, Vector p1, Vector p2, Vector p3)

double doughnut_cheese (const Vector &coord)

double dist_value (const Vector &x, const int type)

double homogeneous (const Vector &x)
Boundary conditions - Dirichlet. More...

double dirichlet_velocity_xy_exponent (const Vector &x)

double dirichlet_velocity_xy_sinusoidal (const Vector &x)

void normal_vector_1 (const Vector &x, Vector &p)

void normal_vector_2 (const Vector &x, Vector &p)
Normal vector for level_set_type = 7. Circle centered at [0.5 , 0.6]. More...

double traction_xy_exponent (const Vector &x)
Neumann condition for exponent based solution. More...

double rhs_fun_circle (const Vector &x)
f for the Poisson problem (-nabla^2 u = f). More...

double rhs_fun_xy_exponent (const Vector &x)

double rhs_fun_xy_sinusoidal (const Vector &x)

## ◆ dirichlet_velocity_xy_exponent()

 double dirichlet_velocity_xy_exponent ( const Vector & x )

Definition at line 223 of file sbm_aux.hpp.

## ◆ dirichlet_velocity_xy_sinusoidal()

 double dirichlet_velocity_xy_sinusoidal ( const Vector & x )

Definition at line 229 of file sbm_aux.hpp.

## ◆ dist_value()

 double dist_value ( const Vector & x, const int type )

Analytic distance to the 0 level set. Positive value if the point is inside the domain, and negative value if outside.

Definition at line 56 of file sbm_aux.hpp.

## ◆ doughnut_cheese()

 double doughnut_cheese ( const Vector & coord )

Definition at line 32 of file sbm_aux.hpp.

## ◆ homogeneous()

 double homogeneous ( const Vector & x )

Boundary conditions - Dirichlet.

Definition at line 218 of file sbm_aux.hpp.

## ◆ normal_vector_1()

 void normal_vector_1 ( const Vector & x, Vector & p )

Boundary conditions - Neumann Normal vector for level_set_type = 1. Circle centered at [0.5 , 0.5]

Definition at line 236 of file sbm_aux.hpp.

## ◆ normal_vector_2()

 void normal_vector_2 ( const Vector & x, Vector & p )

Normal vector for level_set_type = 7. Circle centered at [0.5 , 0.6].

Definition at line 246 of file sbm_aux.hpp.

## ◆ point_inside_trigon()

 double point_inside_trigon ( const Vector px, Vector p1, Vector p2, Vector p3 )

Definition at line 17 of file sbm_aux.hpp.

## ◆ rhs_fun_circle()

 double rhs_fun_circle ( const Vector & x )

f for the Poisson problem (-nabla^2 u = f).

Definition at line 268 of file sbm_aux.hpp.

## ◆ rhs_fun_xy_exponent()

 double rhs_fun_xy_exponent ( const Vector & x )

Definition at line 273 of file sbm_aux.hpp.

## ◆ rhs_fun_xy_sinusoidal()

 double rhs_fun_xy_sinusoidal ( const Vector & x )

Definition at line 288 of file sbm_aux.hpp.

## ◆ traction_xy_exponent()

 double traction_xy_exponent ( const Vector & x )

Neumann condition for exponent based solution.

Definition at line 256 of file sbm_aux.hpp.