|
| DGElasticityDirichletLFIntegrator (VectorCoefficient &uD_, Coefficient &lambda_, Coefficient &mu_, double alpha_, double kappa_) |
|
virtual void | AssembleRHSElementVect (const FiniteElement &el, ElementTransformation &Tr, Vector &elvect) |
|
virtual void | AssembleRHSElementVect (const FiniteElement &el, FaceElementTransformations &Tr, Vector &elvect) |
|
virtual void | AssembleRHSElementVect (const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)=0 |
|
virtual void | AssembleRHSElementVect (const FiniteElement &el, FaceElementTransformations &Tr, Vector &elvect) |
|
virtual void | AssembleRHSElementVect (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, Vector &elvect) |
|
virtual bool | SupportsDevice () |
| Method probing for assembly on device. More...
|
|
virtual void | AssembleDevice (const FiniteElementSpace &fes, const Array< int > &markers, Vector &b) |
| Method defining assembly on device. More...
|
|
virtual void | AssembleRHSElementVect (const FiniteElement &el1, const FiniteElement &el2, FaceElementTransformations &Tr, Vector &elvect) |
|
virtual void | SetIntRule (const IntegrationRule *ir) |
|
const IntegrationRule * | GetIntRule () |
|
virtual | ~LinearFormIntegrator () |
|
Boundary linear form integrator for imposing non-zero Dirichlet boundary conditions, in a DG elasticity formulation. Specifically, the linear form is given by
alpha < u_D, (lambda div(v) I + mu (grad(v) + grad(v)^T)) . n > +
- kappa < h^{-1} (lambda + 2 mu) u_D, v >,
where u_D is the given Dirichlet data. The parameters alpha, kappa, lambda and mu, should match the parameters with the same names used in the bilinear form integrator, DGElasticityIntegrator.
Definition at line 566 of file lininteg.hpp.