15 #include "../config/config.hpp"
16 #include "../general/globals.hpp"
36 void FNorm(
double &scale_factor,
double &scaled_fnorm2)
const;
63 template <
int M,
int N>
67 for (
int i = 0; i < M; i++)
69 for (
int j = 0; j < N; j++)
71 (*this)(i,j) = values[i][j];
82 data.
Wrap(d, h*w,
false);
90 void Reset(
double *d,
int h,
int w)
112 {
return const_cast<double*
>((
const double*)data);}
127 inline const double &
operator()(
int i,
int j)
const;
133 double Trace()
const;
136 virtual double &
Elem(
int i,
int j);
139 virtual const double &
Elem(
int i,
int j)
const;
142 void Mult(
const double *x,
double *y)
const;
166 double InnerProduct(
const double *x,
const double *y)
const;
183 {
return InnerProduct((
const double *)x, (
const double *)y); }
202 void Set(
double alpha,
const double *A);
233 void Norm2(
double *v)
const;
250 { Eigensystem(ev, &evect); }
254 { Eigensystem(ev, &evect); }
259 { Eigensystem(b, ev); }
263 { Eigensystem(b, ev, &evect); }
268 { Eigensystem(b, ev, &evect); }
271 int Rank(
double tol)
const;
288 void SetRow(
int r,
const double* row);
291 void SetCol(
int c,
const double* col);
296 void SetRow(
int row,
double value);
298 void SetCol(
int col,
double value);
308 void Diag(
double c,
int n);
310 void Diag(
double *diag,
int n);
345 int row_offset,
int col_offset);
347 void CopyMNDiag(
double c,
int n,
int row_offset,
int col_offset);
349 void CopyMNDiag(
double *diag,
int n,
int row_offset,
int col_offset);
385 const double *
Read(
bool on_dev =
true)
const
415 void Add(
const DenseMatrix &A,
const DenseMatrix &B,
416 double alpha, DenseMatrix &C);
419 void Add(
double alpha,
const double *A,
420 double beta,
const double *B, DenseMatrix &C);
423 void Add(
double alpha,
const DenseMatrix &A,
424 double beta,
const DenseMatrix &B, DenseMatrix &C);
440 bool LinearSolve(DenseMatrix& A,
double* X,
double TOL = 1.e-9);
443 void Mult(
const DenseMatrix &
b,
const DenseMatrix &c, DenseMatrix &
a);
446 void AddMult(
const DenseMatrix &
b,
const DenseMatrix &c, DenseMatrix &
a);
449 void AddMult_a(
double alpha,
const DenseMatrix &
b,
const DenseMatrix &c,
462 void CalcInverse(
const DenseMatrix &
a, DenseMatrix &inva);
470 void CalcOrtho(
const DenseMatrix &J, Vector &n);
473 void MultAAt(
const DenseMatrix &
a, DenseMatrix &aat);
476 void MultADAt(
const DenseMatrix &A,
const Vector &D, DenseMatrix &ADAt);
479 void AddMultADAt(
const DenseMatrix &A,
const Vector &D, DenseMatrix &ADAt);
482 void MultABt(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &ABt);
485 void MultADBt(
const DenseMatrix &A,
const Vector &D,
486 const DenseMatrix &B, DenseMatrix &ADBt);
489 void AddMultABt(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &ABt);
492 void AddMultADBt(
const DenseMatrix &A,
const Vector &D,
493 const DenseMatrix &B, DenseMatrix &ADBt);
496 void AddMult_a_ABt(
double a,
const DenseMatrix &A,
const DenseMatrix &B,
500 void MultAtB(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &AtB);
503 void AddMult_a_AAt(
double a,
const DenseMatrix &A, DenseMatrix &AAt);
506 void Mult_a_AAt(
double a,
const DenseMatrix &A, DenseMatrix &AAt);
509 void MultVVt(
const Vector &v, DenseMatrix &vvt);
511 void MultVWt(
const Vector &v,
const Vector &w, DenseMatrix &VWt);
514 void AddMultVWt(
const Vector &v,
const Vector &w, DenseMatrix &VWt);
517 void AddMultVVt(
const Vector &v, DenseMatrix &VWt);
520 void AddMult_a_VWt(
const double a,
const Vector &v,
const Vector &w,
524 void AddMult_a_VVt(
const double a,
const Vector &v, DenseMatrix &VVt);
534 #ifdef MFEM_USE_LAPACK
558 bool Factor(
int m,
double TOL = 0.0);
562 double Det(
int m)
const;
566 void Mult(
int m,
int n,
double *X)
const;
570 void LSolve(
int m,
int n,
double *X)
const;
574 void USolve(
int m,
int n,
double *X)
const;
578 void Solve(
int m,
int n,
double *X)
const;
582 void RightSolve(
int m,
int n,
double *X)
const;
589 static void SubMult(
int m,
int n,
int r,
const double *A21,
590 const double *X1,
double *X2);
602 void BlockFactor(
int m,
int n,
double *A12,
double *A21,
double *A22)
const;
620 double *B1,
double *B2)
const;
629 const double *X2,
double *Y1)
const;
664 void Mult(
const double *x,
double *y)
const;
688 #ifdef MFEM_USE_LAPACK
738 bool left_eigen_vectors =
false,
739 bool right_eigen_vectors =
false);
758 #ifdef MFEM_USE_LAPACK
767 bool left_singular_vectors=
false,
768 bool right_singlular_vectors=
false);
770 bool left_singular_vectors=
false,
771 bool right_singlular_vectors=
false);
780 #endif // if MFEM_USE_LAPACK
810 tdata.
Wrap(d, i*j*k,
false);
817 tdata.
New(i*j*k, mt);
822 : Mk(NULL, other.Mk.height, other.Mk.width), nk(other.nk)
844 tdata.
New(i*j*k, mt);
852 tdata.
Wrap(ext_data, i*j*k,
false);
863 MFEM_ASSERT_INDEX_IN_RANGE(k, 0,
SizeK());
872 MFEM_ASSERT_INDEX_IN_RANGE(i, 0,
SizeI());
873 MFEM_ASSERT_INDEX_IN_RANGE(j, 0,
SizeJ());
874 MFEM_ASSERT_INDEX_IN_RANGE(k, 0,
SizeK());
880 MFEM_ASSERT_INDEX_IN_RANGE(i, 0,
SizeI());
881 MFEM_ASSERT_INDEX_IN_RANGE(j, 0,
SizeJ());
882 MFEM_ASSERT_INDEX_IN_RANGE(k, 0,
SizeK());
888 MFEM_ASSERT_INDEX_IN_RANGE(k, 0,
SizeK());
892 double *
Data() {
return tdata; }
894 const double *
Data()
const {
return tdata; }
909 const double *
Read(
bool on_dev =
true)
const
951 void BatchLUFactor(DenseTensor &Mlu, Array<int> &P,
const double TOL = 0.0);
962 void BatchLUSolve(
const DenseTensor &Mlu,
const Array<int> &P, Vector &X);
969 MFEM_ASSERT(data && i >= 0 && i < height && j >= 0 && j <
width,
"");
975 MFEM_ASSERT(data && i >= 0 && i < height && j >= 0 && j <
width,
"");
int Size() const
For backward compatibility define Size to be synonym of Width()
void Symmetrize()
(*this) = 1/2 ((*this) + (*this)^t)
void MultABt(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
Multiply a matrix A with the transpose of a matrix B: A*Bt.
DenseMatrix & operator-=(const DenseMatrix &m)
void SymmetricScaling(const Vector &s)
SymmetricScaling this = diag(sqrt(s)) * this * diag(sqrt(s))
void SquareRootInverse()
Replaces the current matrix with its square root inverse.
int CheckFinite(const double *v, const int n)
void BatchLUFactor(DenseTensor &Mlu, Array< int > &P, const double TOL)
Compute the LU factorization of a batch of matrices.
void AddMultVWt(const Vector &v, const Vector &w, DenseMatrix &VWt)
VWt += v w^t.
void Mult(DenseMatrix &X) const
Multiply the inverse matrix by another matrix: X <- A^{-1} X.
DenseMatrix & operator*=(double c)
void GetDiag(Vector &d) const
Returns the diagonal of the matrix.
void SetCol(int c, const double *col)
void UseExternalData(double *ext_data, int i, int j, int k)
DenseTensor & operator=(double c)
Sets the tensor elements equal to constant c.
void MultVWt(const Vector &v, const Vector &w, DenseMatrix &VWt)
double * HostWrite()
Shortcut for mfem::Write(GetMemory(), TotalSize(), false).
Memory< double > & GetMemory()
void SetRow(int r, const double *row)
void InvRightScaling(const Vector &s)
InvRightScaling: this = this * diag(1./s);.
const DenseMatrix & operator()(int k) const
void Eigenvalues(Vector &ev)
Compute eigenvalues of A x = ev x where A = *this.
void SingularValues(Vector &sv) const
void Delete()
Delete the owned pointers and reset the Memory object.
DenseMatrix & operator()(int k)
void Eigensystem(DenseMatrix &b, Vector &ev, DenseMatrix &evect)
void Mult(const Table &A, const Table &B, Table &C)
C = A * B (as boolean matrices)
int Width() const
Get the width (size of input) of the Operator. Synonym with NumCols().
void BlockFactor(int m, int n, double *A12, double *A21, double *A22) const
void BlockBackSolve(int m, int n, int r, const double *U12, const double *X2, double *Y1) const
double InnerProduct(const double *x, const double *y) const
Compute y^t A x.
void CalcAdjugate(const DenseMatrix &a, DenseMatrix &adja)
DenseMatrixSVD(DenseMatrix &M, bool left_singular_vectors=false, bool right_singlular_vectors=false)
const double * Read(bool on_dev=true) const
Shortcut for mfem::Read( GetMemory(), TotalSize(), on_dev).
double EigenvalueImagPart(int i)
T * Write(Memory< T > &mem, int size, bool on_dev=true)
Get a pointer for write access to mem with the mfem::Device's DeviceMemoryClass, if on_dev = true...
void AddMult(const Table &elem_dof, const Vector &x, Vector &y) const
void TestInversion()
Invert and print the numerical conditioning of the inversion.
Data type dense matrix using column-major storage.
DenseMatrix & LeftSingularvectors()
void CopyRows(const DenseMatrix &A, int row1, int row2)
Copy rows row1 through row2 from A to *this.
void Swap(DenseTensor &t)
void Eval(DenseMatrix &M)
const double * Data() const
Abstract data type for matrix inverse.
void AddMult_a_ABt(double a, const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
ABt += a * A * B^t.
double * HostReadWrite()
Shortcut for mfem::ReadWrite(GetMemory(), TotalSize(), false).
void GetInverseMatrix(DenseMatrix &Ainv) const
Compute and return the inverse matrix in Ainv.
void Factor()
Factor the current DenseMatrix, *a.
void CopyFrom(const Memory &src, int size)
Copy size entries from src to *this.
void GetInverseMatrix(int m, double *X) const
Assuming L.U = P.A factored data of size (m x m), compute X <- A^{-1}.
double * GetData() const
Returns the matrix data array.
const Memory< double > & GetMemory() const
Vector & EigenvaluesImagPart()
void CalcOrtho(const DenseMatrix &J, Vector &n)
DenseMatrix & operator=(double c)
Sets the matrix elements equal to constant c.
void Set(double alpha, const double *A)
Set the matrix to alpha * A, assuming that A has the same dimensions as the matrix and uses column-ma...
int Capacity() const
Return the size of the allocated memory.
void Mult_a_AAt(double a, const DenseMatrix &A, DenseMatrix &AAt)
AAt = a * A * A^t.
MemoryType GetMemoryType() const
Return a MemoryType that is currently valid. If both the host and the device pointers are currently v...
static void SubMult(int m, int n, int r, const double *A21, const double *X1, double *X2)
const Vector & Eigenvector(int i)
virtual void Print(std::ostream &out=mfem::out, int width_=4) const
Prints matrix to stream out.
const double & operator()(int i, int j, int k) const
void Set(double alpha, const DenseMatrix &A)
Set the matrix to alpha * A.
void Add(const DenseMatrix &A, const DenseMatrix &B, double alpha, DenseMatrix &C)
C = A + alpha*B.
double & operator()(int i, int j)
Returns reference to a_{ij}.
void Wrap(T *ptr, int size, bool own)
Wrap an externally allocated host pointer, ptr with the current host memory type returned by MemoryMa...
void USolve(int m, int n, double *X) const
double FNorm() const
Compute the Frobenius norm of the matrix.
const double * HostRead() const
Shortcut for mfem::Read(GetMemory(), TotalSize(), false).
void MultTranspose(const double *x, double *y) const
Multiply a vector with the transpose matrix.
void CalcAdjugateTranspose(const DenseMatrix &a, DenseMatrix &adjat)
Calculate the transposed adjugate of a matrix (for NxN matrices, N=1,2,3)
double & operator()(int i, int j, int k)
void RightSolve(int m, int n, double *X) const
DenseMatrix & RightEigenvectors()
void AddMult(const DenseMatrix &b, const DenseMatrix &c, DenseMatrix &a)
Matrix matrix multiplication. A += B * C.
double operator*(const DenseMatrix &m) const
Matrix inner product: tr(A^t B)
double Singularvalue(int i)
void Reset(double *d, int h, int w)
Change the data array and the size of the DenseMatrix.
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
DenseMatrix(const double(&values)[M][N])
void Add(const double c, const DenseMatrix &A)
Adds the matrix A multiplied by the number c to the matrix.
void AddMult_a_VWt(const double a, const Vector &v, const Vector &w, DenseMatrix &VWt)
VWt += a * v w^t.
void InvSymmetricScaling(const Vector &s)
InvSymmetricScaling this = diag(sqrt(1./s)) * this * diag(sqrt(1./s))
void GetRow(int r, Vector &row) const
void BlockForwSolve(int m, int n, int r, const double *L21, double *B1, double *B2) const
Abstract data type matrix.
const double * GetColumn(int col) const
void Norm2(double *v) const
Take the 2-norm of the columns of A and store in v.
void MultADBt(const DenseMatrix &A, const Vector &D, const DenseMatrix &B, DenseMatrix &ADBt)
ADBt = A D B^t, where D is diagonal.
void Invert()
Replaces the current matrix with its inverse.
bool LinearSolve(DenseMatrix &A, double *X, double TOL)
Solves the dense linear system, A * X = B for X
virtual ~DenseMatrixInverse()
Destroys dense inverse matrix.
void LSolve(int m, int n, double *X) const
DenseTensor(int i, int j, int k, MemoryType mt)
DenseTensor(double *d, int i, int j, int k)
DenseMatrixGeneralizedEigensystem(DenseMatrix &a, DenseMatrix &b, bool left_eigen_vectors=false, bool right_eigen_vectors=false)
void LeftScaling(const Vector &s)
LeftScaling this = diag(s) * this.
double Det() const
Compute the determinant of the original DenseMatrix using the LU factors.
void AddMultVVt(const Vector &v, DenseMatrix &VVt)
VVt += v v^t.
void CopyMNDiag(double c, int n, int row_offset, int col_offset)
Copy c on the diagonal of size n to *this at row_offset, col_offset.
bool OwnsHostPtr() const
Return true if the host pointer is owned. Ownership indicates whether the pointer will be deleted by ...
DenseMatrix & LeftEigenvectors()
~DenseMatrixEigensystem()
void AddMult_a_VVt(const double a, const Vector &v, DenseMatrix &VVt)
VVt += a * v v^t.
void Neg()
(*this) = -(*this)
void SetSize(int i, int j, int k, MemoryType mt_=MemoryType::PRESERVE)
virtual void SetOperator(const Operator &op)
Set/update the solver for the given operator.
void Solve(int m, int n, double *X) const
double * ReadWrite(bool on_dev=true)
Shortcut for mfem::ReadWrite(GetMemory(), TotalSize(), on_dev).
void Getl1Diag(Vector &l) const
Returns the l1 norm of the rows of the matrix v_i = sum_j |a_ij|.
void AddToVector(int offset, Vector &v) const
Add the matrix 'data' to the Vector 'v' at the given 'offset'.
const T * Read(const Memory< T > &mem, int size, bool on_dev=true)
Get a pointer for read access to mem with the mfem::Device's DeviceMemoryClass, if on_dev = true...
DenseMatrix & Eigenvectors()
void Reset()
Reset the memory to be empty, ensuring that Delete() will be a no-op.
void GetColumn(int c, Vector &col) const
void AddMult(const Vector &x, Vector &y) const
y += A.x
void Threshold(double eps)
Replace small entries, abs(a_ij) <= eps, with zero.
void CalcInverse(const DenseMatrix &a, DenseMatrix &inva)
void TestInversion()
Print the numerical conditioning of the inversion: ||A^{-1} A - I||.
double MaxMaxNorm() const
Compute the norm ||A|| = max_{ij} |A_{ij}|.
double * Data() const
Returns the matrix data array.
void Swap(Array< T > &, Array< T > &)
void Transpose()
(*this) = (*this)^t
void MultVVt(const Vector &v, DenseMatrix &vvt)
Make a matrix from a vector V.Vt.
double Trace() const
Trace of a square matrix.
void AddMultABt(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
ABt += A * B^t.
void BatchLUSolve(const DenseTensor &Mlu, const Array< int > &P, Vector &X)
Solve batch linear systems.
MemoryType
Memory types supported by MFEM.
DenseTensor(int i, int j, int k)
Vector & EigenvaluesRealPart()
void MultAAt(const DenseMatrix &a, DenseMatrix &aat)
Calculate the matrix A.At.
void GetColumnReference(int c, Vector &col)
void Swap(DenseMatrix &other)
void AddMatrix(DenseMatrix &A, int ro, int co)
Perform (ro+i,co+j)+=A(i,j) for 0<=i<A.Height, 0<=j<A.Width.
DenseMatrix(double *d, int h, int w)
Construct a DenseMatrix using an existing data array.
double * HostWrite()
Shortcut for mfem::Write(GetMemory(), TotalSize(), false).
void Clear()
Delete the matrix data array (if owned) and reset the matrix state.
void Mult(const double *x, double *y) const
Matrix vector multiplication with the inverse of dense matrix.
void CalcInverseTranspose(const DenseMatrix &a, DenseMatrix &inva)
Calculate the inverse transpose of a matrix (for NxN matrices, N=1,2,3)
double * HostReadWrite()
Shortcut for mfem::ReadWrite(GetMemory(), TotalSize(), false).
A class to initialize the size of a Tensor.
void SetDataAndSize(double *d, int s)
Set the Vector data and size.
void MultADAt(const DenseMatrix &A, const Vector &D, DenseMatrix &ADAt)
ADAt = A D A^t, where D is diagonal.
void Eigenvalues(DenseMatrix &b, Vector &ev)
int height
Dimension of the output / number of rows in the matrix.
double * ReadWrite(bool on_dev=true)
Shortcut for mfem::ReadWrite(GetMemory(), TotalSize(), on_dev).
virtual void PrintT(std::ostream &out=mfem::out, int width_=4) const
Prints the transpose matrix to stream out.
void CopyCols(const DenseMatrix &A, int col1, int col2)
Copy columns col1 through col2 from A to *this.
virtual MatrixInverse * Inverse() const
Returns a pointer to the inverse matrix.
double * GetColumn(int col)
bool OwnsData() const
Return the DenseMatrix data (host pointer) ownership flag.
void AddMultADBt(const DenseMatrix &A, const Vector &D, const DenseMatrix &B, DenseMatrix &ADBt)
ADBt = A D B^t, where D is diagonal.
virtual ~DenseMatrix()
Destroys dense matrix.
T * ReadWrite(Memory< T > &mem, int size, bool on_dev=true)
Get a pointer for read+write access to mem with the mfem::Device's DeviceMemoryClass, if on_dev = true, or the mfem::Device's HostMemoryClass, otherwise.
void CopyMNt(const DenseMatrix &A, int row_offset, int col_offset)
Copy matrix A^t to the location in *this at row_offset, col_offset.
void AddMultTranspose(const Vector &x, Vector &y) const
y += A^t x
void CopyExceptMN(const DenseMatrix &A, int m, int n)
Copy All rows and columns except m and n from A.
void New(int size)
Allocate host memory for size entries with the current host memory type returned by MemoryManager::Ge...
void Diag(double c, int n)
Creates n x n diagonal matrix with diagonal elements c.
void Mult(int m, int n, double *X) const
FDualNumber< tbase > sqrt(const FDualNumber< tbase > &f)
sqrt([dual number])
bool Factor(int m, double TOL=0.0)
Compute the LU factorization of the current matrix.
double EigenvalueRealPart(int i)
static const int ipiv_base
void GradToCurl(DenseMatrix &curl)
DenseMatrixInverse()
Default constructor.
double CalcSingularvalue(const int i) const
Return the i-th singular value (decreasing order) of NxN matrix, N=1,2,3.
void GetRowSums(Vector &l) const
Compute the row sums of the DenseMatrix.
void CalcEigenvalues(double *lambda, double *vec) const
const Memory< double > & GetMemory() const
DenseMatrix & RightSingularvectors()
void Eigenvalues(Vector &ev, DenseMatrix &evect)
Compute eigenvalues and eigenvectors of A x = ev x where A = *this.
DenseMatrixEigensystem(DenseMatrix &m)
const double * HostRead() const
Shortcut for mfem::Read(GetMemory(), TotalSize(), false).
int Rank(double tol) const
LUFactors(double *data_, int *ipiv_)
void AddMult_a(double a, const Vector &x, Vector &y) const
y += a * A.x
void RightScaling(const Vector &s)
RightScaling: this = this * diag(s);.
DenseTensor(const DenseTensor &other)
Copy constructor: deep copy.
void MultAtB(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &AtB)
Multiply the transpose of a matrix A with a matrix B: At*B.
void Mult(const double *x, double *y) const
Matrix vector multiplication.
void AddMultTranspose_a(double a, const Vector &x, Vector &y) const
y += a * A^t x
void AddMultADAt(const DenseMatrix &A, const Vector &D, DenseMatrix &ADAt)
ADAt += A D A^t, where D is diagonal.
void GetFromVector(int offset, const Vector &v)
Get the matrix 'data' from the Vector 'v' at the given 'offset'.
Memory< double > & GetMemory()
void CopyMN(const DenseMatrix &A, int m, int n, int Aro, int Aco)
Copy the m x n submatrix of A at row/col offsets Aro/Aco to *this.
double * Write(bool on_dev=true)
Shortcut for mfem::Write(GetMemory(), TotalSize(), on_dev).
double * Write(bool on_dev=true)
Shortcut for mfem::Write(GetMemory(), TotalSize(), on_dev).
~DenseMatrixGeneralizedEigensystem()
void InvLeftScaling(const Vector &s)
InvLeftScaling this = diag(1./s) * this.
void UseExternalData(double *d, int h, int w)
Change the data array and the size of the DenseMatrix.
void Eigensystem(Vector &ev, DenseMatrix &evect)
Compute eigenvalues and eigenvectors of A x = ev x where A = *this.
void SetSize(int s)
Change the size of the DenseMatrix to s x s.
OutStream out(std::cout)
Global stream used by the library for standard output. Initially it uses the same std::streambuf as s...
void AddMult_a(double alpha, const DenseMatrix &b, const DenseMatrix &c, DenseMatrix &a)
Matrix matrix multiplication. A += alpha * B * C.
int Size() const
Get the size of the inverse matrix.
Vector & Singularvalues()
Rank 3 tensor (array of matrices)
double InnerProduct(const Vector &x, const Vector &y) const
Compute y^t A x.
double FNorm2() const
Compute the square of the Frobenius norm of the matrix.
virtual double & Elem(int i, int j)
Returns reference to a_{ij}.
void AdjustDofDirection(Array< int > &dofs)
void GradToDiv(Vector &div)
void AddMult_a_AAt(double a, const DenseMatrix &A, DenseMatrix &AAt)
AAt += a * A * A^t.
int width
Dimension of the input / number of columns in the matrix.
void Eigenvalues(DenseMatrix &b, Vector &ev, DenseMatrix &evect)
Compute generalized eigenvalues of A x = ev B x, where A = *this.
const double * Read(bool on_dev=true) const
Shortcut for mfem::Read( GetMemory(), TotalSize(), on_dev).
virtual void PrintMatlab(std::ostream &out=mfem::out) const
Prints operator in Matlab format.
DenseMatrix & operator+=(const double *m)