MFEM  v4.3.0
Finite element discretization library
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
geom.hpp
Go to the documentation of this file.
1 // Copyright (c) 2010-2021, Lawrence Livermore National Security, LLC. Produced
2 // at the Lawrence Livermore National Laboratory. All Rights reserved. See files
3 // LICENSE and NOTICE for details. LLNL-CODE-806117.
4 //
5 // This file is part of the MFEM library. For more information and source code
6 // availability visit https://mfem.org.
7 //
8 // MFEM is free software; you can redistribute it and/or modify it under the
9 // terms of the BSD-3 license. We welcome feedback and contributions, see file
10 // CONTRIBUTING.md for details.
11 
12 #ifndef MFEM_GEOM
13 #define MFEM_GEOM
14 
15 #include "../config/config.hpp"
16 #include "../linalg/densemat.hpp"
17 #include "intrules.hpp"
18 
19 namespace mfem
20 {
21 
22 /** Types of domains for integration rules and reference finite elements:
23  Geometry::POINT - a point
24  Geometry::SEGMENT - the interval [0,1]
25  Geometry::TRIANGLE - triangle with vertices (0,0), (1,0), (0,1)
26  Geometry::SQUARE - the unit square (0,1)x(0,1)
27  Geometry::TETRAHEDRON - w/ vert. (0,0,0),(1,0,0),(0,1,0),(0,0,1)
28  Geometry::CUBE - the unit cube
29  Geometry::PRISM - w/ vert. (0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1),(0,1,1)
30 */
31 class Geometry
32 {
33 public:
34  enum Type
35  {
36  INVALID = -1,
39  };
40 
41  static const int NumGeom = NUM_GEOMETRIES;
42  static const int MaxDim = 3;
43  static const int NumBdrArray[NumGeom];
44  static const char *Name[NumGeom];
45  static const double Volume[NumGeom];
46  static const int Dimension[NumGeom];
47  static const int DimStart[MaxDim+2]; // including MaxDim+1
48  static const int NumVerts[NumGeom];
49  static const int NumEdges[NumGeom];
50  static const int NumFaces[NumGeom];
51 
52  // Structure that holds constants describing the Geometries.
53  template <Type Geom> struct Constants;
54 
55 private:
56  IntegrationRule *GeomVert[NumGeom];
57  IntegrationPoint GeomCenter[NumGeom];
58  DenseMatrix *GeomToPerfGeomJac[NumGeom];
59  DenseMatrix *PerfGeomToGeomJac[NumGeom];
60 
61 public:
62  Geometry();
63  ~Geometry();
64 
65  /** @brief Return an IntegrationRule consisting of all vertices of the given
66  Geometry::Type, @a GeomType. */
67  const IntegrationRule *GetVertices(int GeomType);
68 
69  /// Return the center of the given Geometry::Type, @a GeomType.
70  const IntegrationPoint &GetCenter(int GeomType)
71  { return GeomCenter[GeomType]; }
72 
73  /// Get a random point in the reference element specified by @a GeomType.
74  /** This method uses the function rand() for random number generation. */
75  static void GetRandomPoint(int GeomType, IntegrationPoint &ip);
76 
77  /// Check if the given point is inside the given reference element.
78  static bool CheckPoint(int GeomType, const IntegrationPoint &ip);
79  /** @brief Check if the given point is inside the given reference element.
80  Overload for fuzzy tolerance. */
81  static bool CheckPoint(int GeomType, const IntegrationPoint &ip, double eps);
82 
83  /// Project a point @a end, onto the given Geometry::Type, @a GeomType.
84  /** Check if the @a end point is inside the reference element, if not
85  overwrite it with the point on the boundary that lies on the line segment
86  between @a beg and @a end (@a beg must be inside the element). Return
87  true if @a end is inside the element, and false otherwise. */
88  static bool ProjectPoint(int GeomType, const IntegrationPoint &beg,
89  IntegrationPoint &end);
90 
91  /// Project a point @a ip, onto the given Geometry::Type, @a GeomType.
92  /** If @a ip is outside the element, replace it with the point on the
93  boundary that is closest to the original @a ip and return false;
94  otherwise, return true without changing @a ip. */
95  static bool ProjectPoint(int GeomType, IntegrationPoint &ip);
96 
97  const DenseMatrix &GetGeomToPerfGeomJac(int GeomType) const
98  { return *GeomToPerfGeomJac[GeomType]; }
100  { return PerfGeomToGeomJac[GeomType]; }
101  void GetPerfPointMat(int GeomType, DenseMatrix &pm);
102  void JacToPerfJac(int GeomType, const DenseMatrix &J,
103  DenseMatrix &PJ) const;
104 
105  /// Returns true if the given @a geom is of tensor-product type (i.e. if geom
106  /// is a segment, quadrilateral, or hexahedron), returns false otherwise.
107  static bool IsTensorProduct(Type geom)
108  { return geom == SEGMENT || geom == SQUARE || geom == CUBE; }
109 
110  /// Returns the Geometry::Type corresponding to a tensor-product of the
111  /// given dimension.
113  {
114  switch (dim)
115  {
116  case 0: return POINT;
117  case 1: return SEGMENT;
118  case 2: return SQUARE;
119  case 3: return CUBE;
120  default: MFEM_ABORT("Invalid dimension."); return INVALID;
121  }
122  }
123 
124  /// Return the number of boundary "faces" of a given Geometry::Type.
125  int NumBdr(int GeomType) { return NumBdrArray[GeomType]; }
126 };
127 
128 template <> struct Geometry::Constants<Geometry::POINT>
129 {
130  static const int Dimension = 0;
131  static const int NumVert = 1;
132 
133  static const int NumOrient = 1;
134  static const int Orient[NumOrient][NumVert];
135  static const int InvOrient[NumOrient];
136 };
137 
138 template <> struct Geometry::Constants<Geometry::SEGMENT>
139 {
140  static const int Dimension = 1;
141  static const int NumVert = 2;
142  static const int NumEdges = 1;
143  static const int Edges[NumEdges][2];
144 
145  static const int NumOrient = 2;
146  static const int Orient[NumOrient][NumVert];
147  static const int InvOrient[NumOrient];
148 };
149 
150 template <> struct Geometry::Constants<Geometry::TRIANGLE>
151 {
152  static const int Dimension = 2;
153  static const int NumVert = 3;
154  static const int NumEdges = 3;
155  static const int Edges[NumEdges][2];
156  // Upper-triangular part of the local vertex-to-vertex graph.
157  struct VertToVert
158  {
159  static const int I[NumVert];
160  static const int J[NumEdges][2]; // {end,edge_idx}
161  };
162  static const int NumFaces = 1;
163  static const int FaceVert[NumFaces][NumVert];
164 
165  // For a given base tuple v={v0,v1,v2}, the orientation of a permutation
166  // u={u0,u1,u2} of v, is an index 'j' such that u[i]=v[Orient[j][i]].
167  // The static method Mesh::GetTriOrientation, computes the index 'j' of the
168  // permutation that maps the second argument 'test' to the first argument
169  // 'base': test[Orient[j][i]]=base[i].
170  static const int NumOrient = 6;
171  static const int Orient[NumOrient][NumVert];
172  // The inverse of orientation 'j' is InvOrient[j].
173  static const int InvOrient[NumOrient];
174 };
175 
176 template <> struct Geometry::Constants<Geometry::SQUARE>
177 {
178  static const int Dimension = 2;
179  static const int NumVert = 4;
180  static const int NumEdges = 4;
181  static const int Edges[NumEdges][2];
182  // Upper-triangular part of the local vertex-to-vertex graph.
183  struct VertToVert
184  {
185  static const int I[NumVert];
186  static const int J[NumEdges][2]; // {end,edge_idx}
187  };
188  static const int NumFaces = 1;
189  static const int FaceVert[NumFaces][NumVert];
190 
191  static const int NumOrient = 8;
192  static const int Orient[NumOrient][NumVert];
193  static const int InvOrient[NumOrient];
194 };
195 
196 template <> struct Geometry::Constants<Geometry::TETRAHEDRON>
197 {
198  static const int Dimension = 3;
199  static const int NumVert = 4;
200  static const int NumEdges = 6;
201  static const int Edges[NumEdges][2];
202  static const int NumFaces = 4;
203  static const int FaceTypes[NumFaces];
204  static const int MaxFaceVert = 3;
205  static const int FaceVert[NumFaces][MaxFaceVert];
206  // Upper-triangular part of the local vertex-to-vertex graph.
207  struct VertToVert
208  {
209  static const int I[NumVert];
210  static const int J[NumEdges][2]; // {end,edge_idx}
211  };
212 
213  static const int NumOrient = 24;
214  static const int Orient[NumOrient][NumVert];
215  static const int InvOrient[NumOrient];
216 };
217 
218 template <> struct Geometry::Constants<Geometry::CUBE>
219 {
220  static const int Dimension = 3;
221  static const int NumVert = 8;
222  static const int NumEdges = 12;
223  static const int Edges[NumEdges][2];
224  static const int NumFaces = 6;
225  static const int FaceTypes[NumFaces];
226  static const int MaxFaceVert = 4;
227  static const int FaceVert[NumFaces][MaxFaceVert];
228  // Upper-triangular part of the local vertex-to-vertex graph.
229  struct VertToVert
230  {
231  static const int I[NumVert];
232  static const int J[NumEdges][2]; // {end,edge_idx}
233  };
234 };
235 
236 template <> struct Geometry::Constants<Geometry::PRISM>
237 {
238  static const int Dimension = 3;
239  static const int NumVert = 6;
240  static const int NumEdges = 9;
241  static const int Edges[NumEdges][2];
242  static const int NumFaces = 5;
243  static const int FaceTypes[NumFaces];
244  static const int MaxFaceVert = 4;
245  static const int FaceVert[NumFaces][MaxFaceVert];
246  // Upper-triangular part of the local vertex-to-vertex graph.
247  struct VertToVert
248  {
249  static const int I[NumVert];
250  static const int J[NumEdges][2]; // {end,edge_idx}
251  };
252 };
253 
254 // Defined in fe.cpp to ensure construction after 'mfem::WedgeFE'.
255 extern Geometry Geometries;
256 
257 
259 {
260 public:
261  int Times, ETimes;
264  int NumBdrEdges; // at the beginning of RefEdges
265  int Type;
266 
267  RefinedGeometry(int NPts, int NRefG, int NRefE, int NBdrE = 0) :
268  RefPts(NPts), RefGeoms(NRefG), RefEdges(NRefE), NumBdrEdges(NBdrE) { }
269 };
270 
272 {
273 private:
274  int type; // Quadrature1D type (ClosedUniform is default)
277 
278  RefinedGeometry *FindInRGeom(Geometry::Type Geom, int Times, int ETimes,
279  int Type);
280  IntegrationRule *FindInIntPts(Geometry::Type Geom, int NPts);
281 
282 public:
283  GeometryRefiner();
284 
285  /// Set the Quadrature1D type of points to use for subdivision.
286  void SetType(const int t) { type = t; }
287  /// Get the Quadrature1D type of points used for subdivision.
288  int GetType() const { return type; }
289 
290  RefinedGeometry *Refine(Geometry::Type Geom, int Times, int ETimes = 1);
291 
292  /// @note This method always uses Quadrature1D::OpenUniform points.
293  const IntegrationRule *RefineInterior(Geometry::Type Geom, int Times);
294 
295  /// Get the Refinement level based on number of points
296  virtual int GetRefinementLevelFromPoints(Geometry::Type Geom, int Npts);
297 
298  /// Get the Refinement level based on number of elements
299  virtual int GetRefinementLevelFromElems(Geometry::Type geom, int Npts);
300 
302 };
303 
304 extern GeometryRefiner GlobGeometryRefiner;
305 
306 }
307 
308 #endif
Class for an integration rule - an Array of IntegrationPoint.
Definition: intrules.hpp:90
static Type TensorProductGeometry(int dim)
Definition: geom.hpp:112
RefinedGeometry(int NPts, int NRefG, int NRefE, int NBdrE=0)
Definition: geom.hpp:267
static const int NumGeom
Definition: geom.hpp:41
void JacToPerfJac(int GeomType, const DenseMatrix &J, DenseMatrix &PJ) const
Definition: geom.cpp:734
const Geometry::Type geom
Definition: ex1.cpp:40
static void GetRandomPoint(int GeomType, IntegrationPoint &ip)
Get a random point in the reference element specified by GeomType.
Definition: geom.cpp:244
Data type dense matrix using column-major storage.
Definition: densemat.hpp:23
static const double Volume[NumGeom]
Definition: geom.hpp:45
static const int NumEdges[NumGeom]
Definition: geom.hpp:49
Array< int > RefEdges
Definition: geom.hpp:263
const IntegrationPoint & GetCenter(int GeomType)
Return the center of the given Geometry::Type, GeomType.
Definition: geom.hpp:70
const IntegrationRule * GetVertices(int GeomType)
Return an IntegrationRule consisting of all vertices of the given Geometry::Type, GeomType...
Definition: geom.cpp:225
const IntegrationRule * RefineInterior(Geometry::Type Geom, int Times)
Definition: geom.cpp:1331
const DenseMatrix & GetGeomToPerfGeomJac(int GeomType) const
Definition: geom.hpp:97
static const int NumFaces[NumGeom]
Definition: geom.hpp:50
Geometry Geometries
Definition: fe.cpp:13507
static const int Dimension[NumGeom]
Definition: geom.hpp:46
void SetType(const int t)
Set the Quadrature1D type of points to use for subdivision.
Definition: geom.hpp:286
static const int NumVerts[NumGeom]
Definition: geom.hpp:48
GeometryRefiner GlobGeometryRefiner
Definition: geom.cpp:1518
IntegrationRule RefPts
Definition: geom.hpp:262
static const int NumBdrArray[NumGeom]
Definition: geom.hpp:43
RefinedGeometry * Refine(Geometry::Type Geom, int Times, int ETimes=1)
Definition: geom.cpp:942
virtual int GetRefinementLevelFromElems(Geometry::Type geom, int Npts)
Get the Refinement level based on number of elements.
Definition: geom.cpp:1477
static const char * Name[NumGeom]
Definition: geom.hpp:44
static const int MaxDim
Definition: geom.hpp:42
static bool ProjectPoint(int GeomType, const IntegrationPoint &beg, IntegrationPoint &end)
Project a point end, onto the given Geometry::Type, GeomType.
Definition: geom.cpp:508
void GetPerfPointMat(int GeomType, DenseMatrix &pm)
Definition: geom.cpp:661
int NumBdr(int GeomType)
Return the number of boundary &quot;faces&quot; of a given Geometry::Type.
Definition: geom.hpp:125
DenseMatrix * GetPerfGeomToGeomJac(int GeomType)
Definition: geom.hpp:99
static bool IsTensorProduct(Type geom)
Definition: geom.hpp:107
Class for integration point with weight.
Definition: intrules.hpp:25
int GetType() const
Get the Quadrature1D type of points used for subdivision.
Definition: geom.hpp:288
virtual int GetRefinementLevelFromPoints(Geometry::Type Geom, int Npts)
Get the Refinement level based on number of points.
Definition: geom.cpp:1410
static const int DimStart[MaxDim+2]
Definition: geom.hpp:47
int dim
Definition: ex24.cpp:53
RefCoord t[3]
static bool CheckPoint(int GeomType, const IntegrationPoint &ip)
Check if the given point is inside the given reference element.
Definition: geom.cpp:345
Array< int > RefGeoms
Definition: geom.hpp:263