MFEM
v4.3.0
Finite element discretization library
|
#include <maxwell_solver.hpp>
Public Member Functions | |
MaxwellSolver (ParMesh &pmesh, int sOrder, double(*eps)(const Vector &), double(*muInv)(const Vector &), double(*sigma)(const Vector &), void(*j_src)(const Vector &, double, Vector &), Array< int > &abcs, Array< int > &dbcs, void(*dEdt_bc)(const Vector &, double, Vector &)) | |
~MaxwellSolver () | |
int | GetLogging () const |
void | SetLogging (int logging) |
HYPRE_BigInt | GetProblemSize () |
void | PrintSizes () |
void | SetInitialEField (VectorCoefficient &EFieldCoef) |
void | SetInitialBField (VectorCoefficient &BFieldCoef) |
void | Mult (const Vector &B, Vector &dEdt) const |
Perform the action of the operator: y = k = f(x, t), where k solves the algebraic equation F(x, k, t) = G(x, t) and t is the current time. More... | |
void | ImplicitSolve (const double dt, const Vector &x, Vector &k) |
Solve the equation: k = f(x + dt k, t), for the unknown k at the current time t. More... | |
double | GetMaximumTimeStep () const |
double | GetEnergy () const |
Operator & | GetNegCurl () |
Vector & | GetEField () |
Vector & | GetBField () |
void | SyncGridFuncs () |
void | RegisterVisItFields (VisItDataCollection &visit_dc) |
void | WriteVisItFields (int it=0) |
void | InitializeGLVis () |
void | DisplayToGLVis () |
Public Member Functions inherited from mfem::TimeDependentOperator | |
TimeDependentOperator (int n=0, double t_=0.0, Type type_=EXPLICIT) | |
Construct a "square" TimeDependentOperator y = f(x,t), where x and y have the same dimension n. More... | |
TimeDependentOperator (int h, int w, double t_=0.0, Type type_=EXPLICIT) | |
Construct a TimeDependentOperator y = f(x,t), where x and y have dimensions w and h, respectively. More... | |
virtual double | GetTime () const |
Read the currently set time. More... | |
virtual void | SetTime (const double t_) |
Set the current time. More... | |
bool | isExplicit () const |
True if type is EXPLICIT. More... | |
bool | isImplicit () const |
True if type is IMPLICIT or HOMOGENEOUS. More... | |
bool | isHomogeneous () const |
True if type is HOMOGENEOUS. More... | |
EvalMode | GetEvalMode () const |
Return the current evaluation mode. See SetEvalMode() for details. More... | |
virtual void | SetEvalMode (const EvalMode new_eval_mode) |
Set the evaluation mode of the time-dependent operator. More... | |
virtual void | ExplicitMult (const Vector &x, Vector &y) const |
Perform the action of the explicit part of the operator, G: y = G(x, t) where t is the current time. More... | |
virtual void | ImplicitMult (const Vector &x, const Vector &k, Vector &y) const |
Perform the action of the implicit part of the operator, F: y = F(x, k, t) where t is the current time. More... | |
virtual Operator & | GetImplicitGradient (const Vector &x, const Vector &k, double shift) const |
Return an Operator representing (dF/dk shift + dF/dx) at the given x, k, and the currently set time. More... | |
virtual Operator & | GetExplicitGradient (const Vector &x) const |
Return an Operator representing dG/dx at the given point x and the currently set time. More... | |
virtual int | SUNImplicitSetup (const Vector &x, const Vector &fx, int jok, int *jcur, double gamma) |
Setup the ODE linear system \( A(x,t) = (I - gamma J) \) or \( A = (M - gamma J) \), where \( J(x,t) = \frac{df}{dt(x,t)} \). More... | |
virtual int | SUNImplicitSolve (const Vector &b, Vector &x, double tol) |
Solve the ODE linear system \( A x = b \) as setup by the method SUNImplicitSetup(). More... | |
virtual int | SUNMassSetup () |
Setup the mass matrix in the ODE system \( M y' = f(y,t) \) . More... | |
virtual int | SUNMassSolve (const Vector &b, Vector &x, double tol) |
Solve the mass matrix linear system \( M x = b \) as setup by the method SUNMassSetup(). More... | |
virtual int | SUNMassMult (const Vector &x, Vector &v) |
Compute the mass matrix-vector product \( v = M x \) . More... | |
virtual | ~TimeDependentOperator () |
Public Member Functions inherited from mfem::Operator | |
void | InitTVectors (const Operator *Po, const Operator *Ri, const Operator *Pi, Vector &x, Vector &b, Vector &X, Vector &B) const |
Initializes memory for true vectors of linear system. More... | |
Operator (int s=0) | |
Construct a square Operator with given size s (default 0). More... | |
Operator (int h, int w) | |
Construct an Operator with the given height (output size) and width (input size). More... | |
int | Height () const |
Get the height (size of output) of the Operator. Synonym with NumRows(). More... | |
int | NumRows () const |
Get the number of rows (size of output) of the Operator. Synonym with Height(). More... | |
int | Width () const |
Get the width (size of input) of the Operator. Synonym with NumCols(). More... | |
int | NumCols () const |
Get the number of columns (size of input) of the Operator. Synonym with Width(). More... | |
virtual MemoryClass | GetMemoryClass () const |
Return the MemoryClass preferred by the Operator. More... | |
virtual void | MultTranspose (const Vector &x, Vector &y) const |
Action of the transpose operator: y=A^t(x) . The default behavior in class Operator is to generate an error. More... | |
virtual Operator & | GetGradient (const Vector &x) const |
Evaluate the gradient operator at the point x. The default behavior in class Operator is to generate an error. More... | |
virtual void | AssembleDiagonal (Vector &diag) const |
Computes the diagonal entries into diag. Typically, this operation only makes sense for linear Operators. In some cases, only an approximation of the diagonal is computed. More... | |
virtual const Operator * | GetProlongation () const |
Prolongation operator from linear algebra (linear system) vectors, to input vectors for the operator. NULL means identity. More... | |
virtual const Operator * | GetRestriction () const |
Restriction operator from input vectors for the operator to linear algebra (linear system) vectors. NULL means identity. More... | |
virtual const Operator * | GetOutputProlongation () const |
Prolongation operator from linear algebra (linear system) vectors, to output vectors for the operator. NULL means identity. More... | |
virtual const Operator * | GetOutputRestrictionTranspose () const |
Transpose of GetOutputRestriction, directly available in this form to facilitate matrix-free RAP-type operators. More... | |
virtual const Operator * | GetOutputRestriction () const |
Restriction operator from output vectors for the operator to linear algebra (linear system) vectors. NULL means identity. More... | |
void | FormLinearSystem (const Array< int > &ess_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B, int copy_interior=0) |
Form a constrained linear system using a matrix-free approach. More... | |
void | FormRectangularLinearSystem (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Vector &x, Vector &b, Operator *&A, Vector &X, Vector &B) |
Form a column-constrained linear system using a matrix-free approach. More... | |
virtual void | RecoverFEMSolution (const Vector &X, const Vector &b, Vector &x) |
Reconstruct a solution vector x (e.g. a GridFunction) from the solution X of a constrained linear system obtained from Operator::FormLinearSystem() or Operator::FormRectangularLinearSystem(). More... | |
void | FormSystemOperator (const Array< int > &ess_tdof_list, Operator *&A) |
Return in A a parallel (on truedofs) version of this square operator. More... | |
void | FormRectangularSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, Operator *&A) |
Return in A a parallel (on truedofs) version of this rectangular operator (including constraints). More... | |
void | FormDiscreteOperator (Operator *&A) |
Return in A a parallel (on truedofs) version of this rectangular operator. More... | |
void | PrintMatlab (std::ostream &out, int n=0, int m=0) const |
Prints operator with input size n and output size m in Matlab format. More... | |
virtual | ~Operator () |
Virtual destructor. More... | |
Type | GetType () const |
Return the type ID of the Operator class. More... | |
Additional Inherited Members | |
Public Types inherited from mfem::TimeDependentOperator | |
enum | Type { EXPLICIT, IMPLICIT, HOMOGENEOUS } |
enum | EvalMode { NORMAL, ADDITIVE_TERM_1, ADDITIVE_TERM_2 } |
Evaluation mode. See SetEvalMode() for details. More... | |
Public Types inherited from mfem::Operator | |
enum | DiagonalPolicy { DIAG_ZERO, DIAG_ONE, DIAG_KEEP } |
Defines operator diagonal policy upon elimination of rows and/or columns. More... | |
enum | Type { ANY_TYPE, MFEM_SPARSEMAT, Hypre_ParCSR, PETSC_MATAIJ, PETSC_MATIS, PETSC_MATSHELL, PETSC_MATNEST, PETSC_MATHYPRE, PETSC_MATGENERIC, Complex_Operator, MFEM_ComplexSparseMat, Complex_Hypre_ParCSR } |
Enumeration defining IDs for some classes derived from Operator. More... | |
Protected Member Functions inherited from mfem::Operator | |
void | FormConstrainedSystemOperator (const Array< int > &ess_tdof_list, ConstrainedOperator *&Aout) |
see FormSystemOperator() More... | |
void | FormRectangularConstrainedSystemOperator (const Array< int > &trial_tdof_list, const Array< int > &test_tdof_list, RectangularConstrainedOperator *&Aout) |
see FormRectangularSystemOperator() More... | |
Operator * | SetupRAP (const Operator *Pi, const Operator *Po) |
Returns RAP Operator of this, using input/output Prolongation matrices Pi corresponds to "P", Po corresponds to "Rt". More... | |
Protected Attributes inherited from mfem::TimeDependentOperator | |
double | t |
Current time. More... | |
Type | type |
Describes the form of the TimeDependentOperator. More... | |
EvalMode | eval_mode |
Current evaluation mode. More... | |
Protected Attributes inherited from mfem::Operator | |
int | height |
Dimension of the output / number of rows in the matrix. More... | |
int | width |
Dimension of the input / number of columns in the matrix. More... | |
Definition at line 37 of file maxwell_solver.hpp.
mfem::electromagnetics::MaxwellSolver::MaxwellSolver | ( | ParMesh & | pmesh, |
int | sOrder, | ||
double(*)(const Vector &) | eps, | ||
double(*)(const Vector &) | muInv, | ||
double(*)(const Vector &) | sigma, | ||
void(*)(const Vector &, double, Vector &) | j_src, | ||
Array< int > & | abcs, | ||
Array< int > & | dbcs, | ||
void(*)(const Vector &, double, Vector &) | dEdt_bc | ||
) |
Definition at line 29 of file maxwell_solver.cpp.
mfem::electromagnetics::MaxwellSolver::~MaxwellSolver | ( | ) |
Definition at line 272 of file maxwell_solver.cpp.
void mfem::electromagnetics::MaxwellSolver::DisplayToGLVis | ( | ) |
Definition at line 606 of file maxwell_solver.cpp.
|
inline |
Definition at line 71 of file maxwell_solver.hpp.
|
inline |
Definition at line 70 of file maxwell_solver.hpp.
double mfem::electromagnetics::MaxwellSolver::GetEnergy | ( | ) | const |
Definition at line 536 of file maxwell_solver.cpp.
|
inline |
Definition at line 50 of file maxwell_solver.hpp.
double mfem::electromagnetics::MaxwellSolver::GetMaximumTimeStep | ( | ) | const |
Definition at line 481 of file maxwell_solver.cpp.
|
inline |
Definition at line 68 of file maxwell_solver.hpp.
HYPRE_BigInt mfem::electromagnetics::MaxwellSolver::GetProblemSize | ( | ) |
Definition at line 338 of file maxwell_solver.cpp.
|
virtual |
Solve the equation: k = f(x + dt k, t), for the unknown k at the current time t.
For general F and G, the equation for k becomes: F(x + dt k, k, t) = G(x + dt k, t).
The input vector x corresponds to time index (or cycle) n, while the currently set time, t, and the result vector k correspond to time index n+1. The time step dt corresponds to the time interval between cycles n and n+1.
This method allows for the abstract implementation of some time integration methods, including diagonal implicit Runge-Kutta (DIRK) methods and the backward Euler method in particular.
If not re-implemented, this method simply generates an error.
Reimplemented from mfem::TimeDependentOperator.
Definition at line 378 of file maxwell_solver.cpp.
void mfem::electromagnetics::MaxwellSolver::InitializeGLVis | ( | ) |
Definition at line 584 of file maxwell_solver.cpp.
Perform the action of the operator: y = k = f(x, t), where k solves the algebraic equation F(x, k, t) = G(x, t) and t is the current time.
Reimplemented from mfem::TimeDependentOperator.
Definition at line 372 of file maxwell_solver.cpp.
void mfem::electromagnetics::MaxwellSolver::PrintSizes | ( | ) |
Definition at line 344 of file maxwell_solver.cpp.
void mfem::electromagnetics::MaxwellSolver::RegisterVisItFields | ( | VisItDataCollection & | visit_dc | ) |
Definition at line 549 of file maxwell_solver.cpp.
void mfem::electromagnetics::MaxwellSolver::SetInitialBField | ( | VectorCoefficient & | BFieldCoef | ) |
Definition at line 364 of file maxwell_solver.cpp.
void mfem::electromagnetics::MaxwellSolver::SetInitialEField | ( | VectorCoefficient & | EFieldCoef | ) |
Definition at line 356 of file maxwell_solver.cpp.
|
inline |
Definition at line 51 of file maxwell_solver.hpp.
void mfem::electromagnetics::MaxwellSolver::SyncGridFuncs | ( | ) |
Definition at line 474 of file maxwell_solver.cpp.
void mfem::electromagnetics::MaxwellSolver::WriteVisItFields | ( | int | it = 0 | ) |
Definition at line 562 of file maxwell_solver.cpp.