MFEM  v4.0
Finite element discretization library
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
intrules.cpp
Go to the documentation of this file.
1 // Copyright (c) 2010, Lawrence Livermore National Security, LLC. Produced at
2 // the Lawrence Livermore National Laboratory. LLNL-CODE-443211. All Rights
3 // reserved. See file COPYRIGHT for details.
4 //
5 // This file is part of the MFEM library. For more information and source code
6 // availability see http://mfem.org.
7 //
8 // MFEM is free software; you can redistribute it and/or modify it under the
9 // terms of the GNU Lesser General Public License (as published by the Free
10 // Software Foundation) version 2.1 dated February 1999.
11 
12 // Implementation of IntegrationRule(s) classes
13 
14 // Acknowledgment: Some of the high-precision triangular and tetrahedral
15 // quadrature rules below were obtained from the Encyclopaedia of Cubature
16 // Formulas at http://nines.cs.kuleuven.be/research/ecf/ecf.html
17 
18 #include "fem.hpp"
19 #include <cmath>
20 
21 #ifdef MFEM_USE_MPFR
22 #include <mpfr.h>
23 #endif
24 
25 using namespace std;
26 
27 namespace mfem
28 {
29 
30 IntegrationRule::IntegrationRule(IntegrationRule &irx, IntegrationRule &iry)
31 {
32  int i, j, nx, ny;
33 
34  nx = irx.GetNPoints();
35  ny = iry.GetNPoints();
36  SetSize(nx * ny);
37 
38  for (j = 0; j < ny; j++)
39  {
40  IntegrationPoint &ipy = iry.IntPoint(j);
41  for (i = 0; i < nx; i++)
42  {
43  IntegrationPoint &ipx = irx.IntPoint(i);
44  IntegrationPoint &ip = IntPoint(j*nx+i);
45 
46  ip.x = ipx.x;
47  ip.y = ipy.x;
48  ip.weight = ipx.weight * ipy.weight;
49  }
50  }
51 }
52 
53 IntegrationRule::IntegrationRule(IntegrationRule &irx, IntegrationRule &iry,
54  IntegrationRule &irz)
55 {
56  const int nx = irx.GetNPoints();
57  const int ny = iry.GetNPoints();
58  const int nz = irz.GetNPoints();
59  SetSize(nx*ny*nz);
60 
61  for (int iz = 0; iz < nz; ++iz)
62  {
63  IntegrationPoint &ipz = irz.IntPoint(iz);
64  for (int iy = 0; iy < ny; ++iy)
65  {
66  IntegrationPoint &ipy = iry.IntPoint(iy);
67  for (int ix = 0; ix < nx; ++ix)
68  {
69  IntegrationPoint &ipx = irx.IntPoint(ix);
70  IntegrationPoint &ip = IntPoint(iz*nx*ny + iy*nx + ix);
71 
72  ip.x = ipx.x;
73  ip.y = ipy.x;
74  ip.z = ipz.x;
75  ip.weight = ipx.weight*ipy.weight*ipz.weight;
76  }
77  }
78  }
79 }
80 
81 const Array<double> &IntegrationRule::GetWeights() const
82 {
83  if (weights.Size() != GetNPoints())
84  {
85  weights.SetSize(GetNPoints());
86  for (int i = 0; i < GetNPoints(); i++)
87  {
88  weights[i] = IntPoint(i).weight;
89  }
90  }
91  return weights;
92 }
93 
94 void IntegrationRule::GrundmannMollerSimplexRule(int s, int n)
95 {
96  // for pow on older compilers
97  using std::pow;
98  const int d = 2*s + 1;
99  Vector fact(d + n + 1);
100  Array<int> beta(n), sums(n);
101 
102  fact(0) = 1.;
103  for (int i = 1; i < fact.Size(); i++)
104  {
105  fact(i) = fact(i - 1)*i;
106  }
107 
108  // number of points is \binom{n + s + 1}{n + 1}
109  int np = 1, f = 1;
110  for (int i = 0; i <= n; i++)
111  {
112  np *= (s + i + 1), f *= (i + 1);
113  }
114  np /= f;
115  SetSize(np);
116 
117  int pt = 0;
118  for (int i = 0; i <= s; i++)
119  {
120  double weight;
121 
122  weight = pow(2., -2*s)*pow(static_cast<double>(d + n - 2*i),
123  d)/fact(i)/fact(d + n - i);
124  if (i%2)
125  {
126  weight = -weight;
127  }
128 
129  // loop over all beta : beta_0 + ... + beta_{n-1} <= s - i
130  int k = s - i;
131  beta = 0;
132  sums = 0;
133  while (true)
134  {
135  IntegrationPoint &ip = IntPoint(pt++);
136  ip.weight = weight;
137  ip.x = double(2*beta[0] + 1)/(d + n - 2*i);
138  ip.y = double(2*beta[1] + 1)/(d + n - 2*i);
139  if (n == 3)
140  {
141  ip.z = double(2*beta[2] + 1)/(d + n - 2*i);
142  }
143 
144  int j = 0;
145  while (sums[j] == k)
146  {
147  beta[j++] = 0;
148  if (j == n)
149  {
150  goto done_beta;
151  }
152  }
153  beta[j]++;
154  sums[j]++;
155  for (j--; j >= 0; j--)
156  {
157  sums[j] = sums[j+1];
158  }
159  }
160  done_beta:
161  ;
162  }
163 }
164 
165 
166 #ifdef MFEM_USE_MPFR
167 
168 // Class for computing hi-precision (HP) quadrature in 1D
169 class HP_Quadrature1D
170 {
171 protected:
172  mpfr_t pi, z, pp, p1, p2, p3, dz, w, rtol;
173 
174 public:
175  static const mpfr_rnd_t rnd = GMP_RNDN;
176  static const int default_prec = 128;
177 
178  // prec = MPFR precision in bits
179  HP_Quadrature1D(const int prec = default_prec)
180  {
181  mpfr_inits2(prec, pi, z, pp, p1, p2, p3, dz, w, rtol, (mpfr_ptr) 0);
182  mpfr_const_pi(pi, rnd);
183  mpfr_set_si_2exp(rtol, 1, -32, rnd); // 2^(-32) < 2.33e-10
184  }
185 
186  // set rtol = 2^exponent
187  // this is a tolerance for the last correction of x_i in Newton's algorithm;
188  // this gives roughly rtol^2 accuracy for the final x_i.
189  void SetRelTol(const int exponent = -32)
190  {
191  mpfr_set_si_2exp(rtol, 1, exponent, rnd);
192  }
193 
194  // n - number of quadrature points
195  // k - index of the point to compute, 0 <= k < n
196  // see also: QuadratureFunctions1D::GaussLegendre
197  void ComputeGaussLegendrePoint(const int n, const int k)
198  {
199  MFEM_ASSERT(n > 0 && 0 <= k && k < n, "invalid n = " << n
200  << " and/or k = " << k);
201 
202  int i = (k < (n+1)/2) ? k+1 : n-k;
203 
204  // Initial guess for the x-coordinate:
205  // set z = cos(pi * (i - 0.25) / (n + 0.5)) =
206  // = sin(pi * ((n+1-2*i) / (2*n+1)))
207  mpfr_set_si(z, n+1-2*i, rnd);
208  mpfr_div_si(z, z, 2*n+1, rnd);
209  mpfr_mul(z, z, pi, rnd);
210  mpfr_sin(z, z, rnd);
211 
212  bool done = false;
213  while (1)
214  {
215  mpfr_set_si(p2, 1, rnd);
216  mpfr_set(p1, z, rnd);
217  for (int j = 2; j <= n; j++)
218  {
219  mpfr_set(p3, p2, rnd);
220  mpfr_set(p2, p1, rnd);
221  // p1 = ((2 * j - 1) * z * p2 - (j - 1) * p3) / j;
222  mpfr_mul_si(p1, z, 2*j-1, rnd);
223  mpfr_mul_si(p3, p3, j-1, rnd);
224  mpfr_fms(p1, p1, p2, p3, rnd);
225  mpfr_div_si(p1, p1, j, rnd);
226  }
227  // p1 is Legendre polynomial
228 
229  // derivative of the Legendre polynomial:
230  // pp = n * (z*p1-p2) / (z*z - 1);
231  mpfr_fms(pp, z, p1, p2, rnd);
232  mpfr_mul_si(pp, pp, n, rnd);
233  mpfr_sqr(p2, z, rnd);
234  mpfr_sub_si(p2, p2, 1, rnd);
235  mpfr_div(pp, pp, p2, rnd);
236 
237  if (done) { break; }
238 
239  // set delta_z: dz = p1/pp;
240  mpfr_div(dz, p1, pp, rnd);
241  // compute absolute tolerance: atol = rtol*(1-z)
242  mpfr_t &atol = w;
243  mpfr_si_sub(atol, 1, z, rnd);
244  mpfr_mul(atol, atol, rtol, rnd);
245  if (mpfr_cmpabs(dz, atol) <= 0)
246  {
247  done = true;
248  // continue the computation: get pp at the new point, then exit
249  }
250  // update z = z - dz
251  mpfr_sub(z, z, dz, rnd);
252  }
253 
254  // map z to (0,1): z = (1 - z)/2
255  mpfr_si_sub(z, 1, z, rnd);
256  mpfr_div_2si(z, z, 1, rnd);
257 
258  // weight: w = 1/(4*z*(1 - z)*pp*pp)
259  mpfr_sqr(w, pp, rnd);
260  mpfr_mul_2si(w, w, 2, rnd);
261  mpfr_mul(w, w, z, rnd);
262  mpfr_si_sub(p1, 1, z, rnd); // p1 = 1-z
263  mpfr_mul(w, w, p1, rnd);
264  mpfr_si_div(w, 1, w, rnd);
265 
266  if (k >= (n+1)/2) { mpfr_swap(z, p1); }
267  }
268 
269  // n - number of quadrature points
270  // k - index of the point to compute, 0 <= k < n
271  // see also: QuadratureFunctions1D::GaussLobatto
272  void ComputeGaussLobattoPoint(const int n, const int k)
273  {
274  MFEM_ASSERT(n > 1 && 0 <= k && k < n, "invalid n = " << n
275  << " and/or k = " << k);
276 
277  int i = (k < (n+1)/2) ? k : n-1-k;
278 
279  if (i == 0)
280  {
281  mpfr_set_si(z, 0, rnd);
282  mpfr_set_si(p1, 1, rnd);
283  mpfr_set_si(w, n*(n-1), rnd);
284  mpfr_si_div(w, 1, w, rnd); // weight = 1/(n*(n-1))
285  return;
286  }
287  // initial guess is the corresponding Chebyshev point, z:
288  // z = -cos(pi * i/(n-1)) = sin(pi * (2*i-n+1)/(2*n-2))
289  mpfr_set_si(z, 2*i-n+1, rnd);
290  mpfr_div_si(z, z, 2*(n-1), rnd);
291  mpfr_mul(z, pi, z, rnd);
292  mpfr_sin(z, z, rnd);
293  bool done = false;
294  for (int iter = 0 ; true ; ++iter)
295  {
296  // build Legendre polynomials, up to P_{n}(z)
297  mpfr_set_si(p1, 1, rnd);
298  mpfr_set(p2, z, rnd);
299 
300  for (int l = 1 ; l < (n-1) ; ++l)
301  {
302  // P_{l+1}(x) = [ (2*l+1)*x*P_l(x) - l*P_{l-1}(x) ]/(l+1)
303  mpfr_mul_si(p1, p1, l, rnd);
304  mpfr_mul_si(p3, z, 2*l+1, rnd);
305  mpfr_fms(p3, p3, p2, p1, rnd);
306  mpfr_div_si(p3, p3, l+1, rnd);
307 
308  mpfr_set(p1, p2, rnd);
309  mpfr_set(p2, p3, rnd);
310  }
311  if (done) { break; }
312  // compute dz = resid/deriv = (z*p2 - p1) / (n*p2);
313  mpfr_fms(dz, z, p2, p1, rnd);
314  mpfr_mul_si(p3, p2, n, rnd);
315  mpfr_div(dz, dz, p3, rnd);
316  // update: z = z - dz
317  mpfr_sub(z, z, dz, rnd);
318  // compute absolute tolerance: atol = rtol*(1 + z)
319  mpfr_t &atol = w;
320  mpfr_add_si(atol, z, 1, rnd);
321  mpfr_mul(atol, atol, rtol, rnd);
322  // check for convergence
323  if (mpfr_cmpabs(dz, atol) <= 0)
324  {
325  done = true;
326  // continue the computation: get p2 at the new point, then exit
327  }
328  // If the iteration does not converge fast, something is wrong.
329  MFEM_VERIFY(iter < 8, "n = " << n << ", i = " << i
330  << ", dz = " << mpfr_get_d(dz, rnd));
331  }
332  // Map to the interval [0,1] and scale the weights
333  mpfr_add_si(z, z, 1, rnd);
334  mpfr_div_2si(z, z, 1, rnd);
335  // set the symmetric point
336  mpfr_si_sub(p1, 1, z, rnd);
337  // w = 1/[ n*(n-1)*[P_{n-1}(z)]^2 ]
338  mpfr_sqr(w, p2, rnd);
339  mpfr_mul_si(w, w, n*(n-1), rnd);
340  mpfr_si_div(w, 1, w, rnd);
341 
342  if (k >= (n+1)/2) { mpfr_swap(z, p1); }
343  }
344 
345  double GetPoint() const { return mpfr_get_d(z, rnd); }
346  double GetSymmPoint() const { return mpfr_get_d(p1, rnd); }
347  double GetWeight() const { return mpfr_get_d(w, rnd); }
348 
349  const mpfr_t &GetHPPoint() const { return z; }
350  const mpfr_t &GetHPSymmPoint() const { return p1; }
351  const mpfr_t &GetHPWeight() const { return w; }
352 
353  ~HP_Quadrature1D()
354  {
355  mpfr_clears(pi, z, pp, p1, p2, p3, dz, w, rtol, (mpfr_ptr) 0);
356  mpfr_free_cache();
357  }
358 };
359 
360 #endif // MFEM_USE_MPFR
361 
362 
363 void QuadratureFunctions1D::GaussLegendre(const int np, IntegrationRule* ir)
364 {
365  ir->SetSize(np);
366 
367  switch (np)
368  {
369  case 1:
370  ir->IntPoint(0).Set1w(0.5, 1.0);
371  return;
372  case 2:
373  ir->IntPoint(0).Set1w(0.21132486540518711775, 0.5);
374  ir->IntPoint(1).Set1w(0.78867513459481288225, 0.5);
375  return;
376  case 3:
377  ir->IntPoint(0).Set1w(0.11270166537925831148, 5./18.);
378  ir->IntPoint(1).Set1w(0.5, 4./9.);
379  ir->IntPoint(2).Set1w(0.88729833462074168852, 5./18.);
380  return;
381  }
382 
383  const int n = np;
384  const int m = (n+1)/2;
385 
386 #ifndef MFEM_USE_MPFR
387 
388  for (int i = 1; i <= m; i++)
389  {
390  double z = cos(M_PI * (i - 0.25) / (n + 0.5));
391  double pp, p1, dz, xi = 0.;
392  bool done = false;
393  while (1)
394  {
395  double p2 = 1;
396  p1 = z;
397  for (int j = 2; j <= n; j++)
398  {
399  double p3 = p2;
400  p2 = p1;
401  p1 = ((2 * j - 1) * z * p2 - (j - 1) * p3) / j;
402  }
403  // p1 is Legendre polynomial
404 
405  pp = n * (z*p1-p2) / (z*z - 1);
406  if (done) { break; }
407 
408  dz = p1/pp;
409  if (fabs(dz) < 1e-16)
410  {
411  done = true;
412  // map the new point (z-dz) to (0,1):
413  xi = ((1 - z) + dz)/2; // (1 - (z - dz))/2 has bad round-off
414  // continue the computation: get pp at the new point, then exit
415  }
416  // update: z = z - dz
417  z -= dz;
418  }
419 
420  ir->IntPoint(i-1).x = xi;
421  ir->IntPoint(n-i).x = 1 - xi;
422  ir->IntPoint(i-1).weight =
423  ir->IntPoint(n-i).weight = 1./(4*xi*(1 - xi)*pp*pp);
424  }
425 
426 #else // MFEM_USE_MPFR is defined
427 
428  HP_Quadrature1D hp_quad;
429  for (int i = 1; i <= m; i++)
430  {
431  hp_quad.ComputeGaussLegendrePoint(n, i-1);
432 
433  ir->IntPoint(i-1).x = hp_quad.GetPoint();
434  ir->IntPoint(n-i).x = hp_quad.GetSymmPoint();
435  ir->IntPoint(i-1).weight = ir->IntPoint(n-i).weight = hp_quad.GetWeight();
436  }
437 
438 #endif // MFEM_USE_MPFR
439 
440 }
441 
442 void QuadratureFunctions1D::GaussLobatto(const int np, IntegrationRule* ir)
443 {
444  /* An np point Gauss-Lobatto quadrature has (np - 2) free abscissa the other
445  (2) abscissa are the interval endpoints.
446 
447  The interior x_i are the zeros of P'_{np-1}(x). The weights of the
448  interior points on the interval [-1,1] are:
449 
450  w_i = 2/(np*(np-1)*[P_{np-1}(x_i)]^2)
451 
452  The end point weights (on [-1,1]) are: w_{end} = 2/(np*(np-1)).
453 
454  The interior abscissa are found via a nonlinear solve, the initial guess
455  for each point is the corresponding Chebyshev point.
456 
457  After we find all points on the interval [-1,1], we will map and scale the
458  points and weights to the MFEM natural interval [0,1].
459 
460  References:
461  [1] E. E. Lewis and W. F. Millier, "Computational Methods of Neutron
462  Transport", Appendix A
463  [2] the QUADRULE software by John Burkardt,
464  https://people.sc.fsu.edu/~jburkardt/cpp_src/quadrule/quadrule.cpp
465  */
466 
467  ir->SetSize(np);
468  if ( np == 1 )
469  {
470  ir->IntPoint(0).Set1w(0.5, 1.0);
471  }
472  else
473  {
474 
475 #ifndef MFEM_USE_MPFR
476 
477  // endpoints and respective weights
478  ir->IntPoint(0).x = 0.0;
479  ir->IntPoint(np-1).x = 1.0;
480  ir->IntPoint(0).weight = ir->IntPoint(np-1).weight = 1.0/(np*(np-1));
481 
482  // interior points and weights
483  // use symmetry and compute just half of the points
484  for (int i = 1 ; i <= (np-1)/2 ; ++i)
485  {
486  // initial guess is the corresponding Chebyshev point, x_i:
487  // x_i = -cos(\pi * (i / (np-1)))
488  double x_i = std::sin(M_PI * ((double)(i)/(np-1) - 0.5));
489  double z_i = 0., p_l;
490  bool done = false;
491  for (int iter = 0 ; true ; ++iter)
492  {
493  // build Legendre polynomials, up to P_{np}(x_i)
494  double p_lm1 = 1.0;
495  p_l = x_i;
496 
497  for (int l = 1 ; l < (np-1) ; ++l)
498  {
499  // The Legendre polynomials can be built by recursion:
500  // x * P_l(x) = 1/(2*l+1)*[ (l+1)*P_{l+1}(x) + l*P_{l-1} ], i.e.
501  // P_{l+1}(x) = [ (2*l+1)*x*P_l(x) - l*P_{l-1} ]/(l+1)
502  double p_lp1 = ( (2*l + 1)*x_i*p_l - l*p_lm1)/(l + 1);
503 
504  p_lm1 = p_l;
505  p_l = p_lp1;
506  }
507  if (done) { break; }
508  // after this loop, p_l holds P_{np-1}(x_i)
509  // resid = (x^2-1)*P'_{np-1}(x_i)
510  // but use the recurrence relationship
511  // (x^2 -1)P'_l(x) = l*[ x*P_l(x) - P_{l-1}(x) ]
512  // thus, resid = (np-1) * (x_i*p_l - p_lm1)
513 
514  // The derivative of the residual is:
515  // \frac{d}{d x} \left[ (x^2 -1)P'_l(x) ] \right] =
516  // l * (l+1) * P_l(x), with l = np-1,
517  // therefore, deriv = np * (np-1) * p_l;
518 
519  // compute dx = resid/deriv
520  double dx = (x_i*p_l - p_lm1) / (np*p_l);
521  if (std::abs(dx) < 1e-16)
522  {
523  done = true;
524  // Map the point to the interval [0,1]
525  z_i = ((1.0 + x_i) - dx)/2;
526  // continue the computation: get p_l at the new point, then exit
527  }
528  // If the iteration does not converge fast, something is wrong.
529  MFEM_VERIFY(iter < 8, "np = " << np << ", i = " << i
530  << ", dx = " << dx);
531  // update x_i:
532  x_i -= dx;
533  }
534  // Map to the interval [0,1] and scale the weights
535  IntegrationPoint &ip = ir->IntPoint(i);
536  ip.x = z_i;
537  // w_i = (2/[ n*(n-1)*[P_{n-1}(x_i)]^2 ]) / 2
538  ip.weight = (double)(1.0 / (np*(np-1)*p_l*p_l));
539 
540  // set the symmetric point
541  IntegrationPoint &symm_ip = ir->IntPoint(np-1-i);
542  symm_ip.x = 1.0 - z_i;
543  symm_ip.weight = ip.weight;
544  }
545 
546 #else // MFEM_USE_MPFR is defined
547 
548  HP_Quadrature1D hp_quad;
549  // use symmetry and compute just half of the points
550  for (int i = 0 ; i <= (np-1)/2 ; ++i)
551  {
552  hp_quad.ComputeGaussLobattoPoint(np, i);
553  ir->IntPoint(i).x = hp_quad.GetPoint();
554  ir->IntPoint(np-1-i).x = hp_quad.GetSymmPoint();
555  ir->IntPoint(i).weight =
556  ir->IntPoint(np-1-i).weight = hp_quad.GetWeight();
557  }
558 
559 #endif // MFEM_USE_MPFR
560 
561  }
562 }
563 
564 void QuadratureFunctions1D::OpenUniform(const int np, IntegrationRule* ir)
565 {
566  ir->SetSize(np);
567 
568  // The Newton-Cotes quadrature is based on weights that integrate exactly the
569  // interpolatory polynomial through the equally spaced quadrature points.
570  for (int i = 0; i < np ; ++i)
571  {
572  ir->IntPoint(i).x = double(i+1) / double(np + 1);
573  }
574 
575  CalculateUniformWeights(ir, Quadrature1D::OpenUniform);
576 }
577 
578 void QuadratureFunctions1D::ClosedUniform(const int np,
579  IntegrationRule* ir)
580 {
581  ir->SetSize(np);
582  if ( np == 1 ) // allow this case as "closed"
583  {
584  ir->IntPoint(0).Set1w(0.5, 1.0);
585  return;
586  }
587 
588  for (int i = 0; i < np ; ++i)
589  {
590  ir->IntPoint(i).x = double(i) / (np-1);
591  }
592 
593  CalculateUniformWeights(ir, Quadrature1D::ClosedUniform);
594 }
595 
596 void QuadratureFunctions1D::OpenHalfUniform(const int np, IntegrationRule* ir)
597 {
598  ir->SetSize(np);
599 
600  // Open half points: the centers of np uniform intervals
601  for (int i = 0; i < np ; ++i)
602  {
603  ir->IntPoint(i).x = double(2*i+1) / (2*np);
604  }
605 
606  CalculateUniformWeights(ir, Quadrature1D::OpenHalfUniform);
607 }
608 
609 void QuadratureFunctions1D::GivePolyPoints(const int np, double *pts,
610  const int type)
611 {
612  IntegrationRule ir(np);
613 
614  switch (type)
615  {
616  case Quadrature1D::GaussLegendre:
617  {
618  GaussLegendre(np,&ir);
619  break;
620  }
621  case Quadrature1D::GaussLobatto:
622  {
623  GaussLobatto(np, &ir);
624  break;
625  }
626  case Quadrature1D::OpenUniform:
627  {
628  OpenUniform(np,&ir);
629  break;
630  }
631  case Quadrature1D::ClosedUniform:
632  {
633  ClosedUniform(np,&ir);
634  break;
635  }
636  case Quadrature1D::OpenHalfUniform:
637  {
638  OpenHalfUniform(np, &ir);
639  break;
640  }
641  default:
642  {
643  MFEM_ABORT("Asking for an unknown type of 1D Quadrature points, "
644  "type = " << type);
645  }
646  }
647 
648  for (int i = 0 ; i < np ; ++i)
649  {
650  pts[i] = ir.IntPoint(i).x;
651  }
652 }
653 
654 void QuadratureFunctions1D::CalculateUniformWeights(IntegrationRule *ir,
655  const int type)
656 {
657  /* The Lagrange polynomials are:
658  p_i = \prod_{j \neq i} {\frac{x - x_j }{x_i - x_j}}
659 
660  The weight associated with each abscissa is the integral of p_i over
661  [0,1]. To calculate the integral of p_i, we use a Gauss-Legendre
662  quadrature rule. This approach does not suffer from bad round-off/
663  cancellation errors for large number of points.
664  */
665  const int n = ir->Size();
666  switch (n)
667  {
668  case 1:
669  ir->IntPoint(0).weight = 1.;
670  return;
671  case 2:
672  ir->IntPoint(0).weight = .5;
673  ir->IntPoint(1).weight = .5;
674  return;
675  }
676 
677 #ifndef MFEM_USE_MPFR
678 
679  // This algorithm should work for any set of points, not just uniform
680  const IntegrationRule &glob_ir = IntRules.Get(Geometry::SEGMENT, n-1);
681  const int m = glob_ir.GetNPoints();
682  Vector xv(n);
683  for (int j = 0; j < n; j++)
684  {
685  xv(j) = ir->IntPoint(j).x;
686  }
687  Poly_1D::Basis basis(n-1, xv.GetData()); // nodal basis, with nodes at 'xv'
688  Vector w(n);
689  // Integrate all nodal basis functions using 'glob_ir':
690  w = 0.0;
691  for (int i = 0; i < m; i++)
692  {
693  const IntegrationPoint &ip = glob_ir.IntPoint(i);
694  basis.Eval(ip.x, xv);
695  w.Add(ip.weight, xv); // w += ip.weight * xv
696  }
697  for (int j = 0; j < n; j++)
698  {
699  ir->IntPoint(j).weight = w(j);
700  }
701 
702 #else // MFEM_USE_MPFR is defined
703 
704  static const mpfr_rnd_t rnd = HP_Quadrature1D::rnd;
705  HP_Quadrature1D hp_quad;
706  mpfr_t l, lk, w0, wi, tmp, *weights;
707  mpfr_inits2(hp_quad.default_prec, l, lk, w0, wi, tmp, (mpfr_ptr) 0);
708  weights = new mpfr_t[n];
709  for (int i = 0; i < n; i++)
710  {
711  mpfr_init2(weights[i], hp_quad.default_prec);
712  mpfr_set_si(weights[i], 0, rnd);
713  }
714  hp_quad.SetRelTol(-48); // rtol = 2^(-48) ~ 3.5e-15
715  const int p = n-1;
716  const int m = p/2+1; // number of points for Gauss-Legendre quadrature
717  int hinv = 0, ihoffset = 0; // x_i = (i+ihoffset/2)/hinv
718  switch (type)
719  {
720  case Quadrature1D::ClosedUniform:
721  // x_i = i/p, i=0,...,p
722  hinv = p;
723  ihoffset = 0;
724  break;
725  case Quadrature1D::OpenUniform:
726  // x_i = (i+1)/(p+2), i=0,...,p
727  hinv = p+2;
728  ihoffset = 2;
729  break;
730  case Quadrature1D::OpenHalfUniform:
731  // x_i = (i+1/2)/(p+1), i=0,...,p
732  hinv = p+1;
733  ihoffset = 1;
734  break;
735  default:
736  MFEM_ABORT("invalid Quadrature1D type: " << type);
737  }
738  // set w0 = (-1)^p*(p!)/(hinv^p)
739  mpfr_fac_ui(w0, p, rnd);
740  mpfr_ui_pow_ui(tmp, hinv, p, rnd);
741  mpfr_div(w0, w0, tmp, rnd);
742  if (p%2) { mpfr_neg(w0, w0, rnd); }
743 
744  for (int j = 0; j < m; j++)
745  {
746  hp_quad.ComputeGaussLegendrePoint(m, j);
747 
748  // Compute l = \prod_{i=0}^p (x-x_i) and lk = l/(x-x_k), where
749  // x = hp_quad.GetHPPoint(), x_i = (i+ihoffset/2)/hinv, and x_k is the
750  // node closest to x, i.e. k = min(max(round(x*hinv-ihoffset/2),0),p)
751  mpfr_mul_si(tmp, hp_quad.GetHPPoint(), hinv, rnd);
752  mpfr_sub_d(tmp, tmp, 0.5*ihoffset, rnd);
753  mpfr_round(tmp, tmp);
754  int k = min(max((int)mpfr_get_si(tmp, rnd), 0), p);
755  mpfr_set_si(lk, 1, rnd);
756  for (int i = 0; i <= p; i++)
757  {
758  mpfr_set_si(tmp, 2*i+ihoffset, rnd);
759  mpfr_div_si(tmp, tmp, 2*hinv, rnd);
760  mpfr_sub(tmp, hp_quad.GetHPPoint(), tmp, rnd);
761  if (i != k)
762  {
763  mpfr_mul(lk, lk, tmp, rnd);
764  }
765  else
766  {
767  mpfr_set(l, tmp, rnd);
768  }
769  }
770  mpfr_mul(l, l, lk, rnd);
771  mpfr_set(wi, w0, rnd);
772  for (int i = 0; true; i++)
773  {
774  if (i != k)
775  {
776  // tmp = l/(wi*(x - x_i))
777  mpfr_set_si(tmp, 2*i+ihoffset, rnd);
778  mpfr_div_si(tmp, tmp, 2*hinv, rnd);
779  mpfr_sub(tmp, hp_quad.GetHPPoint(), tmp, rnd);
780  mpfr_mul(tmp, tmp, wi, rnd);
781  mpfr_div(tmp, l, tmp, rnd);
782  }
783  else
784  {
785  // tmp = lk/wi
786  mpfr_div(tmp, lk, wi, rnd);
787  }
788  // weights[i] += hp_quad.weight*tmp
789  mpfr_mul(tmp, tmp, hp_quad.GetHPWeight(), rnd);
790  mpfr_add(weights[i], weights[i], tmp, rnd);
791 
792  if (i == p) { break; }
793 
794  // update wi *= (i+1)/(i-p)
795  mpfr_mul_si(wi, wi, i+1, rnd);
796  mpfr_div_si(wi, wi, i-p, rnd);
797  }
798  }
799  for (int i = 0; i < n; i++)
800  {
801  ir->IntPoint(i).weight = mpfr_get_d(weights[i], rnd);
802  mpfr_clear(weights[i]);
803  }
804  delete [] weights;
805  mpfr_clears(l, lk, w0, wi, tmp, (mpfr_ptr) 0);
806 
807 #endif // MFEM_USE_MPFR
808 
809 }
810 
811 
812 int Quadrature1D::CheckClosed(int type)
813 {
814  switch (type)
815  {
816  case GaussLobatto:
817  case ClosedUniform:
818  return type;
819  default:
820  return Invalid;
821  }
822 }
823 
824 int Quadrature1D::CheckOpen(int type)
825 {
826  switch (type)
827  {
828  case GaussLegendre:
829  case GaussLobatto:
830  case OpenUniform:
831  case ClosedUniform:
832  case OpenHalfUniform:
833  return type; // all types can work as open
834  default:
835  return Invalid;
836  }
837 }
838 
839 
840 IntegrationRules IntRules(0, Quadrature1D::GaussLegendre);
841 
842 IntegrationRules RefinedIntRules(1, Quadrature1D::GaussLegendre);
843 
844 IntegrationRules::IntegrationRules(int Ref, int _type):
845  quad_type(_type)
846 {
847  refined = Ref;
848 
849  if (refined < 0) { own_rules = 0; return; }
850 
851  own_rules = 1;
852 
853  PointIntRules.SetSize(2);
854  PointIntRules = NULL;
855 
856  SegmentIntRules.SetSize(32);
857  SegmentIntRules = NULL;
858 
859  // TriangleIntegrationRule() assumes that this size is >= 26
860  TriangleIntRules.SetSize(32);
861  TriangleIntRules = NULL;
862 
863  SquareIntRules.SetSize(32);
864  SquareIntRules = NULL;
865 
866  // TetrahedronIntegrationRule() assumes that this size is >= 10
867  TetrahedronIntRules.SetSize(32);
868  TetrahedronIntRules = NULL;
869 
870  PrismIntRules.SetSize(32);
871  PrismIntRules = NULL;
872 
873  CubeIntRules.SetSize(32);
874  CubeIntRules = NULL;
875 }
876 
877 const IntegrationRule &IntegrationRules::Get(int GeomType, int Order)
878 {
879  Array<IntegrationRule *> *ir_array;
880 
881  switch (GeomType)
882  {
883  case Geometry::POINT: ir_array = &PointIntRules; Order = 0; break;
884  case Geometry::SEGMENT: ir_array = &SegmentIntRules; break;
885  case Geometry::TRIANGLE: ir_array = &TriangleIntRules; break;
886  case Geometry::SQUARE: ir_array = &SquareIntRules; break;
887  case Geometry::TETRAHEDRON: ir_array = &TetrahedronIntRules; break;
888  case Geometry::CUBE: ir_array = &CubeIntRules; break;
889  case Geometry::PRISM: ir_array = &PrismIntRules; break;
890  default:
891  mfem_error("IntegrationRules::Get(...) : Unknown geometry type!");
892  ir_array = NULL;
893  }
894 
895  if (Order < 0)
896  {
897  Order = 0;
898  }
899 
900  if (!HaveIntRule(*ir_array, Order))
901  {
902 #ifdef MFEM_USE_LEGACY_OPENMP
903  #pragma omp critical
904 #endif
905  {
906  if (!HaveIntRule(*ir_array, Order))
907  {
908  IntegrationRule *ir = GenerateIntegrationRule(GeomType, Order);
909  int RealOrder = Order;
910  while (RealOrder+1 < ir_array->Size() &&
911  /* */ (*ir_array)[RealOrder+1] == ir)
912  {
913  RealOrder++;
914  }
915  ir->SetOrder(RealOrder);
916  }
917  }
918  }
919 
920  return *(*ir_array)[Order];
921 }
922 
923 void IntegrationRules::Set(int GeomType, int Order, IntegrationRule &IntRule)
924 {
925  Array<IntegrationRule *> *ir_array;
926 
927  switch (GeomType)
928  {
929  case Geometry::POINT: ir_array = &PointIntRules; break;
930  case Geometry::SEGMENT: ir_array = &SegmentIntRules; break;
931  case Geometry::TRIANGLE: ir_array = &TriangleIntRules; break;
932  case Geometry::SQUARE: ir_array = &SquareIntRules; break;
933  case Geometry::TETRAHEDRON: ir_array = &TetrahedronIntRules; break;
934  case Geometry::CUBE: ir_array = &CubeIntRules; break;
935  case Geometry::PRISM: ir_array = &PrismIntRules; break;
936  default:
937  mfem_error("IntegrationRules::Set(...) : Unknown geometry type!");
938  ir_array = NULL;
939  }
940 
941  if (HaveIntRule(*ir_array, Order))
942  {
943  MFEM_ABORT("Overwriting set rules is not supported!");
944  }
945 
946  AllocIntRule(*ir_array, Order);
947 
948  (*ir_array)[Order] = &IntRule;
949 }
950 
951 void IntegrationRules::DeleteIntRuleArray(Array<IntegrationRule *> &ir_array)
952 {
953  int i;
954  IntegrationRule *ir = NULL;
955 
956  // Many of the intrules have multiple contiguous copies in the ir_array
957  // so we have to be careful to not delete them twice.
958  for (i = 0; i < ir_array.Size(); i++)
959  {
960  if (ir_array[i] != NULL && ir_array[i] != ir)
961  {
962  ir = ir_array[i];
963  delete ir;
964  }
965  }
966 }
967 
969 {
970  if (!own_rules) { return; }
971 
972  DeleteIntRuleArray(PointIntRules);
973  DeleteIntRuleArray(SegmentIntRules);
974  DeleteIntRuleArray(TriangleIntRules);
975  DeleteIntRuleArray(SquareIntRules);
976  DeleteIntRuleArray(TetrahedronIntRules);
977  DeleteIntRuleArray(CubeIntRules);
978  DeleteIntRuleArray(PrismIntRules);
979 }
980 
981 
982 IntegrationRule *IntegrationRules::GenerateIntegrationRule(int GeomType,
983  int Order)
984 {
985  switch (GeomType)
986  {
987  case Geometry::POINT:
988  return PointIntegrationRule(Order);
989  case Geometry::SEGMENT:
990  return SegmentIntegrationRule(Order);
991  case Geometry::TRIANGLE:
992  return TriangleIntegrationRule(Order);
993  case Geometry::SQUARE:
994  return SquareIntegrationRule(Order);
996  return TetrahedronIntegrationRule(Order);
997  case Geometry::CUBE:
998  return CubeIntegrationRule(Order);
999  case Geometry::PRISM:
1000  return PrismIntegrationRule(Order);
1001  default:
1002  mfem_error("IntegrationRules::Set(...) : Unknown geometry type!");
1003  return NULL;
1004  }
1005 }
1006 
1007 
1008 // Integration rules for a point
1009 IntegrationRule *IntegrationRules::PointIntegrationRule(int Order)
1010 {
1011  if (Order > 1)
1012  {
1013  mfem_error("Point Integration Rule of Order > 1 not defined");
1014  return NULL;
1015  }
1016 
1017  IntegrationRule *ir = new IntegrationRule(1);
1018  ir->IntPoint(0).x = .0;
1019  ir->IntPoint(0).weight = 1.;
1020 
1021  PointIntRules[1] = PointIntRules[0] = ir;
1022 
1023  return ir;
1024 }
1025 
1026 // Integration rules for line segment [0,1]
1027 IntegrationRule *IntegrationRules::SegmentIntegrationRule(int Order)
1028 {
1029  int RealOrder = GetSegmentRealOrder(Order); // RealOrder >= Order
1030  // Order is one of {RealOrder-1,RealOrder}
1031  AllocIntRule(SegmentIntRules, RealOrder);
1032 
1033  IntegrationRule tmp, *ir;
1034  ir = refined ? &tmp : new IntegrationRule;
1035 
1036  int n = 0;
1037  // n is the number of points to achieve the exact integral of a
1038  // degree Order polynomial
1039  switch (quad_type)
1040  {
1042  {
1043  // Gauss-Legendre is exact for 2*n-1
1044  n = Order/2 + 1;
1045  quad_func.GaussLegendre(n, ir);
1046  break;
1047  }
1049  {
1050  // Gauss-Lobatto is exact for 2*n-3
1051  n = Order/2 + 2;
1052  quad_func.GaussLobatto(n, ir);
1053  break;
1054  }
1056  {
1057  // Open Newton Cotes is exact for n-(n+1)%2 = n-1+n%2
1058  n = Order | 1; // n is always odd
1059  quad_func.OpenUniform(n, ir);
1060  break;
1061  }
1063  {
1064  // Closed Newton Cotes is exact for n-(n+1)%2 = n-1+n%2
1065  n = Order | 1; // n is always odd
1066  quad_func.ClosedUniform(n, ir);
1067  break;
1068  }
1070  {
1071  // Open half Newton Cotes is exact for n-(n+1)%2 = n-1+n%2
1072  n = Order | 1; // n is always odd
1073  quad_func.OpenHalfUniform(n, ir);
1074  break;
1075  }
1076  default:
1077  {
1078  MFEM_ABORT("unknown Quadrature1D type: " << quad_type);
1079  }
1080  }
1081  if (refined)
1082  {
1083  // Effectively passing memory management to SegmentIntegrationRules
1084  ir = new IntegrationRule(2*n);
1085  for (int j = 0; j < n; j++)
1086  {
1087  ir->IntPoint(j).x = tmp.IntPoint(j).x/2.0;
1088  ir->IntPoint(j).weight = tmp.IntPoint(j).weight/2.0;
1089  ir->IntPoint(j+n).x = 0.5 + tmp.IntPoint(j).x/2.0;
1090  ir->IntPoint(j+n).weight = tmp.IntPoint(j).weight/2.0;
1091  }
1092  }
1093  SegmentIntRules[RealOrder-1] = SegmentIntRules[RealOrder] = ir;
1094  return ir;
1095 }
1096 
1097 // Integration rules for reference triangle {[0,0],[1,0],[0,1]}
1098 IntegrationRule *IntegrationRules::TriangleIntegrationRule(int Order)
1099 {
1100  IntegrationRule *ir = NULL;
1101  // Note: Set TriangleIntRules[*] to ir only *after* ir is fully constructed.
1102  // This is needed in multithreaded environment.
1103 
1104  // assuming that orders <= 25 are pre-allocated
1105  switch (Order)
1106  {
1107  case 0: // 1 point - 0 degree
1108  case 1:
1109  ir = new IntegrationRule(1);
1110  ir->AddTriMidPoint(0, 0.5);
1111  TriangleIntRules[0] = TriangleIntRules[1] = ir;
1112  return ir;
1113 
1114  case 2: // 3 point - 2 degree
1115  ir = new IntegrationRule(3);
1116  ir->AddTriPoints3(0, 1./6., 1./6.);
1117  TriangleIntRules[2] = ir;
1118  // interior points
1119  return ir;
1120 
1121  case 3: // 4 point - 3 degree (has one negative weight)
1122  ir = new IntegrationRule(4);
1123  ir->AddTriMidPoint(0, -0.28125); // -9./32.
1124  ir->AddTriPoints3(1, 0.2, 25./96.);
1125  TriangleIntRules[3] = ir;
1126  return ir;
1127 
1128  case 4: // 6 point - 4 degree
1129  ir = new IntegrationRule(6);
1130  ir->AddTriPoints3(0, 0.091576213509770743460, 0.054975871827660933819);
1131  ir->AddTriPoints3(3, 0.44594849091596488632, 0.11169079483900573285);
1132  TriangleIntRules[4] = ir;
1133  return ir;
1134 
1135  case 5: // 7 point - 5 degree
1136  ir = new IntegrationRule(7);
1137  ir->AddTriMidPoint(0, 0.1125);
1138  ir->AddTriPoints3(1, 0.10128650732345633880, 0.062969590272413576298);
1139  ir->AddTriPoints3(4, 0.47014206410511508977, 0.066197076394253090369);
1140  TriangleIntRules[5] = ir;
1141  return ir;
1142 
1143  case 6: // 12 point - 6 degree
1144  ir = new IntegrationRule(12);
1145  ir->AddTriPoints3(0, 0.063089014491502228340, 0.025422453185103408460);
1146  ir->AddTriPoints3(3, 0.24928674517091042129, 0.058393137863189683013);
1147  ir->AddTriPoints6(6, 0.053145049844816947353, 0.31035245103378440542,
1148  0.041425537809186787597);
1149  TriangleIntRules[6] = ir;
1150  return ir;
1151 
1152  case 7: // 12 point - degree 7
1153  ir = new IntegrationRule(12);
1154  ir->AddTriPoints3R(0, 0.062382265094402118174, 0.067517867073916085443,
1155  0.026517028157436251429);
1156  ir->AddTriPoints3R(3, 0.055225456656926611737, 0.32150249385198182267,
1157  0.043881408714446055037);
1158  // slightly better with explicit 3rd area coordinate
1159  ir->AddTriPoints3R(6, 0.034324302945097146470, 0.66094919618673565761,
1160  0.30472650086816719592, 0.028775042784981585738);
1161  ir->AddTriPoints3R(9, 0.51584233435359177926, 0.27771616697639178257,
1162  0.20644149867001643817, 0.067493187009802774463);
1163  TriangleIntRules[7] = ir;
1164  return ir;
1165 
1166  case 8: // 16 point - 8 degree
1167  ir = new IntegrationRule(16);
1168  ir->AddTriMidPoint(0, 0.0721578038388935841255455552445323);
1169  ir->AddTriPoints3(1, 0.170569307751760206622293501491464,
1170  0.0516086852673591251408957751460645);
1171  ir->AddTriPoints3(4, 0.0505472283170309754584235505965989,
1172  0.0162292488115990401554629641708902);
1173  ir->AddTriPoints3(7, 0.459292588292723156028815514494169,
1174  0.0475458171336423123969480521942921);
1175  ir->AddTriPoints6(10, 0.008394777409957605337213834539296,
1176  0.263112829634638113421785786284643,
1177  0.0136151570872174971324223450369544);
1178  TriangleIntRules[8] = ir;
1179  return ir;
1180 
1181  case 9: // 19 point - 9 degree
1182  ir = new IntegrationRule(19);
1183  ir->AddTriMidPoint(0, 0.0485678981413994169096209912536443);
1184  ir->AddTriPoints3b(1, 0.020634961602524744433,
1185  0.0156673501135695352684274156436046);
1186  ir->AddTriPoints3b(4, 0.12582081701412672546,
1187  0.0389137705023871396583696781497019);
1188  ir->AddTriPoints3(7, 0.188203535619032730240961280467335,
1189  0.0398238694636051265164458871320226);
1190  ir->AddTriPoints3(10, 0.0447295133944527098651065899662763,
1191  0.0127888378293490156308393992794999);
1192  ir->AddTriPoints6(13, 0.0368384120547362836348175987833851,
1193  0.2219629891607656956751025276931919,
1194  0.0216417696886446886446886446886446);
1195  TriangleIntRules[9] = ir;
1196  return ir;
1197 
1198  case 10: // 25 point - 10 degree
1199  ir = new IntegrationRule(25);
1200  ir->AddTriMidPoint(0, 0.0454089951913767900476432975500142);
1201  ir->AddTriPoints3b(1, 0.028844733232685245264984935583748,
1202  0.0183629788782333523585030359456832);
1203  ir->AddTriPoints3(4, 0.109481575485037054795458631340522,
1204  0.0226605297177639673913028223692986);
1205  ir->AddTriPoints6(7, 0.141707219414879954756683250476361,
1206  0.307939838764120950165155022930631,
1207  0.0363789584227100543021575883096803);
1208  ir->AddTriPoints6(13, 0.025003534762686386073988481007746,
1209  0.246672560639902693917276465411176,
1210  0.0141636212655287424183685307910495);
1211  ir->AddTriPoints6(19, 0.0095408154002994575801528096228873,
1212  0.0668032510122002657735402127620247,
1213  4.71083348186641172996373548344341E-03);
1214  TriangleIntRules[10] = ir;
1215  return ir;
1216 
1217  case 11: // 28 point -- 11 degree
1218  ir = new IntegrationRule(28);
1219  ir->AddTriPoints6(0, 0.0,
1220  0.141129718717363295960826061941652,
1221  3.68119189165027713212944752369032E-03);
1222  ir->AddTriMidPoint(6, 0.0439886505811161193990465846607278);
1223  ir->AddTriPoints3(7, 0.0259891409282873952600324854988407,
1224  4.37215577686801152475821439991262E-03);
1225  ir->AddTriPoints3(10, 0.0942875026479224956305697762754049,
1226  0.0190407859969674687575121697178070);
1227  ir->AddTriPoints3b(13, 0.010726449965572372516734795387128,
1228  9.42772402806564602923839129555767E-03);
1229  ir->AddTriPoints3(16, 0.207343382614511333452934024112966,
1230  0.0360798487723697630620149942932315);
1231  ir->AddTriPoints3b(19, 0.122184388599015809877869236727746,
1232  0.0346645693527679499208828254519072);
1233  ir->AddTriPoints6(22, 0.0448416775891304433090523914688007,
1234  0.2772206675282791551488214673424523,
1235  0.0205281577146442833208261574536469);
1236  TriangleIntRules[11] = ir;
1237  return ir;
1238 
1239  case 12: // 33 point - 12 degree
1240  ir = new IntegrationRule(33);
1241  ir->AddTriPoints3b(0, 2.35652204523900E-02, 1.28655332202275E-02);
1242  ir->AddTriPoints3b(3, 1.20551215411079E-01, 2.18462722690190E-02);
1243  ir->AddTriPoints3(6, 2.71210385012116E-01, 3.14291121089425E-02);
1244  ir->AddTriPoints3(9, 1.27576145541586E-01, 1.73980564653545E-02);
1245  ir->AddTriPoints3(12, 2.13173504532100E-02, 3.08313052577950E-03);
1246  ir->AddTriPoints6(15, 1.15343494534698E-01, 2.75713269685514E-01,
1247  2.01857788831905E-02);
1248  ir->AddTriPoints6(21, 2.28383322222570E-02, 2.81325580989940E-01,
1249  1.11783866011515E-02);
1250  ir->AddTriPoints6(27, 2.57340505483300E-02, 1.16251915907597E-01,
1251  8.65811555432950E-03);
1252  TriangleIntRules[12] = ir;
1253  return ir;
1254 
1255  case 13: // 37 point - 13 degree
1256  ir = new IntegrationRule(37);
1257  ir->AddTriPoints3b(0, 0.0,
1258  2.67845189554543044455908674650066E-03);
1259  ir->AddTriMidPoint(3, 0.0293480398063595158995969648597808);
1260  ir->AddTriPoints3(4, 0.0246071886432302181878499494124643,
1261  3.92538414805004016372590903990464E-03);
1262  ir->AddTriPoints3b(7, 0.159382493797610632566158925635800,
1263  0.0253344765879434817105476355306468);
1264  ir->AddTriPoints3(10, 0.227900255506160619646298948153592,
1265  0.0250401630452545330803738542916538);
1266  ir->AddTriPoints3(13, 0.116213058883517905247155321839271,
1267  0.0158235572961491595176634480481793);
1268  ir->AddTriPoints3b(16, 0.046794039901841694097491569577008,
1269  0.0157462815379843978450278590138683);
1270  ir->AddTriPoints6(19, 0.0227978945382486125477207592747430,
1271  0.1254265183163409177176192369310890,
1272  7.90126610763037567956187298486575E-03);
1273  ir->AddTriPoints6(25, 0.0162757709910885409437036075960413,
1274  0.2909269114422506044621801030055257,
1275  7.99081889046420266145965132482933E-03);
1276  ir->AddTriPoints6(31, 0.0897330604516053590796290561145196,
1277  0.2723110556841851025078181617634414,
1278  0.0182757511120486476280967518782978);
1279  TriangleIntRules[13] = ir;
1280  return ir;
1281 
1282  case 14: // 42 point - 14 degree
1283  ir = new IntegrationRule(42);
1284  ir->AddTriPoints3b(0, 2.20721792756430E-02, 1.09417906847145E-02);
1285  ir->AddTriPoints3b(3, 1.64710561319092E-01, 1.63941767720625E-02);
1286  ir->AddTriPoints3(6, 2.73477528308839E-01, 2.58870522536460E-02);
1287  ir->AddTriPoints3(9, 1.77205532412543E-01, 2.10812943684965E-02);
1288  ir->AddTriPoints3(12, 6.17998830908730E-02, 7.21684983488850E-03);
1289  ir->AddTriPoints3(15, 1.93909612487010E-02, 2.46170180120000E-03);
1290  ir->AddTriPoints6(18, 5.71247574036480E-02, 1.72266687821356E-01,
1291  1.23328766062820E-02);
1292  ir->AddTriPoints6(24, 9.29162493569720E-02, 3.36861459796345E-01,
1293  1.92857553935305E-02);
1294  ir->AddTriPoints6(30, 1.46469500556540E-02, 2.98372882136258E-01,
1295  7.21815405676700E-03);
1296  ir->AddTriPoints6(36, 1.26833093287200E-03, 1.18974497696957E-01,
1297  2.50511441925050E-03);
1298  TriangleIntRules[14] = ir;
1299  return ir;
1300 
1301  case 15: // 54 point - 15 degree
1302  ir = new IntegrationRule(54);
1303  ir->AddTriPoints3b(0, 0.0834384072617499333, 0.016330909424402645);
1304  ir->AddTriPoints3b(3, 0.192779070841738867, 0.01370640901568218);
1305  ir->AddTriPoints3(6, 0.293197167913025367, 0.01325501829935165);
1306  ir->AddTriPoints3(9, 0.146467786942772933, 0.014607981068243055);
1307  ir->AddTriPoints3(12, 0.0563628676656034333, 0.005292304033121995);
1308  ir->AddTriPoints3(15, 0.0165751268583703333, 0.0018073215320460175);
1309  ir->AddTriPoints6(18, 0.0099122033092248, 0.239534554154794445,
1310  0.004263874050854718);
1311  ir->AddTriPoints6(24, 0.015803770630228, 0.404878807318339958,
1312  0.006958088258345965);
1313  ir->AddTriPoints6(30, 0.00514360881697066667, 0.0950021131130448885,
1314  0.0021459664703674175);
1315  ir->AddTriPoints6(36, 0.0489223257529888, 0.149753107322273969,
1316  0.008117664640887445);
1317  ir->AddTriPoints6(42, 0.0687687486325192, 0.286919612441334979,
1318  0.012803670460631195);
1319  ir->AddTriPoints6(48, 0.1684044181246992, 0.281835668099084562,
1320  0.016544097765822835);
1321  TriangleIntRules[15] = ir;
1322  return ir;
1323 
1324  case 16: // 61 point - 17 degree (used for 16 as well)
1325  case 17:
1326  ir = new IntegrationRule(61);
1327  ir->AddTriMidPoint(0, 1.67185996454015E-02);
1328  ir->AddTriPoints3b(1, 5.65891888645200E-03, 2.54670772025350E-03);
1329  ir->AddTriPoints3b(4, 3.56473547507510E-02, 7.33543226381900E-03);
1330  ir->AddTriPoints3b(7, 9.95200619584370E-02, 1.21754391768360E-02);
1331  ir->AddTriPoints3b(10, 1.99467521245206E-01, 1.55537754344845E-02);
1332  ir->AddTriPoints3 (13, 2.52141267970953E-01, 1.56285556093100E-02);
1333  ir->AddTriPoints3 (16, 1.62047004658461E-01, 1.24078271698325E-02);
1334  ir->AddTriPoints3 (19, 7.58758822607460E-02, 7.02803653527850E-03);
1335  ir->AddTriPoints3 (22, 1.56547269678220E-02, 1.59733808688950E-03);
1336  ir->AddTriPoints6 (25, 1.01869288269190E-02, 3.34319867363658E-01,
1337  4.05982765949650E-03);
1338  ir->AddTriPoints6 (31, 1.35440871671036E-01, 2.92221537796944E-01,
1339  1.34028711415815E-02);
1340  ir->AddTriPoints6 (37, 5.44239242905830E-02, 3.19574885423190E-01,
1341  9.22999660541100E-03);
1342  ir->AddTriPoints6 (43, 1.28685608336370E-02, 1.90704224192292E-01,
1343  4.23843426716400E-03);
1344  ir->AddTriPoints6 (49, 6.71657824135240E-02, 1.80483211648746E-01,
1345  9.14639838501250E-03);
1346  ir->AddTriPoints6 (55, 1.46631822248280E-02, 8.07113136795640E-02,
1347  3.33281600208250E-03);
1348  TriangleIntRules[16] = TriangleIntRules[17] = ir;
1349  return ir;
1350 
1351  case 18: // 73 point - 19 degree (used for 18 as well)
1352  case 19:
1353  ir = new IntegrationRule(73);
1354  ir->AddTriMidPoint(0, 0.0164531656944595);
1355  ir->AddTriPoints3b(1, 0.020780025853987, 0.005165365945636);
1356  ir->AddTriPoints3b(4, 0.090926214604215, 0.011193623631508);
1357  ir->AddTriPoints3b(7, 0.197166638701138, 0.015133062934734);
1358  ir->AddTriPoints3 (10, 0.255551654403098, 0.015245483901099);
1359  ir->AddTriPoints3 (13, 0.17707794215213, 0.0120796063708205);
1360  ir->AddTriPoints3 (16, 0.110061053227952, 0.0080254017934005);
1361  ir->AddTriPoints3 (19, 0.05552862425184, 0.004042290130892);
1362  ir->AddTriPoints3 (22, 0.012621863777229, 0.0010396810137425);
1363  ir->AddTriPoints6 (25, 0.003611417848412, 0.395754787356943,
1364  0.0019424384524905);
1365  ir->AddTriPoints6 (31, 0.13446675453078, 0.307929983880436,
1366  0.012787080306011);
1367  ir->AddTriPoints6 (37, 0.014446025776115, 0.26456694840652,
1368  0.004440451786669);
1369  ir->AddTriPoints6 (43, 0.046933578838178, 0.358539352205951,
1370  0.0080622733808655);
1371  ir->AddTriPoints6 (49, 0.002861120350567, 0.157807405968595,
1372  0.0012459709087455);
1373  ir->AddTriPoints6 (55, 0.075050596975911, 0.223861424097916,
1374  0.0091214200594755);
1375  ir->AddTriPoints6 (61, 0.03464707481676, 0.142421601113383,
1376  0.0051292818680995);
1377  ir->AddTriPoints6 (67, 0.065494628082938, 0.010161119296278,
1378  0.001899964427651);
1379  TriangleIntRules[18] = TriangleIntRules[19] = ir;
1380  return ir;
1381 
1382  case 20: // 85 point - 20 degree
1383  ir = new IntegrationRule(85);
1384  ir->AddTriMidPoint(0, 0.01380521349884976);
1385  ir->AddTriPoints3b(1, 0.001500649324429, 0.00088951477366337);
1386  ir->AddTriPoints3b(4, 0.0941397519389508667, 0.010056199056980585);
1387  ir->AddTriPoints3b(7, 0.2044721240895264, 0.013408923629665785);
1388  ir->AddTriPoints3(10, 0.264500202532787333, 0.012261566900751005);
1389  ir->AddTriPoints3(13, 0.211018964092076767, 0.008197289205347695);
1390  ir->AddTriPoints3(16, 0.107735607171271333, 0.0073979536993248);
1391  ir->AddTriPoints3(19, 0.0390690878378026667, 0.0022896411388521255);
1392  ir->AddTriPoints3(22, 0.0111743797293296333, 0.0008259132577881085);
1393  ir->AddTriPoints6(25, 0.00534961818733726667, 0.0635496659083522206,
1394  0.001174585454287792);
1395  ir->AddTriPoints6(31, 0.00795481706619893333, 0.157106918940706982,
1396  0.0022329628770908965);
1397  ir->AddTriPoints6(37, 0.0104223982812638, 0.395642114364374018,
1398  0.003049783403953986);
1399  ir->AddTriPoints6(43, 0.0109644147961233333, 0.273167570712910522,
1400  0.0034455406635941015);
1401  ir->AddTriPoints6(49, 0.0385667120854623333, 0.101785382485017108,
1402  0.0039987375362390815);
1403  ir->AddTriPoints6(55, 0.0355805078172182, 0.446658549176413815,
1404  0.003693067142668012);
1405  ir->AddTriPoints6(61, 0.0496708163627641333, 0.199010794149503095,
1406  0.00639966593932413);
1407  ir->AddTriPoints6(67, 0.0585197250843317333, 0.3242611836922827,
1408  0.008629035587848275);
1409  ir->AddTriPoints6(73, 0.121497787004394267, 0.208531363210132855,
1410  0.009336472951467735);
1411  ir->AddTriPoints6(79, 0.140710844943938733, 0.323170566536257485,
1412  0.01140911202919763);
1413  TriangleIntRules[20] = ir;
1414  return ir;
1415 
1416  case 21: // 126 point - 25 degree (used also for degrees from 21 to 24)
1417  case 22:
1418  case 23:
1419  case 24:
1420  case 25:
1421  ir = new IntegrationRule(126);
1422  ir->AddTriPoints3b(0, 0.0279464830731742, 0.0040027909400102085);
1423  ir->AddTriPoints3b(3, 0.131178601327651467, 0.00797353841619525);
1424  ir->AddTriPoints3b(6, 0.220221729512072267, 0.006554570615397765);
1425  ir->AddTriPoints3 (9, 0.298443234019804467, 0.00979150048281781);
1426  ir->AddTriPoints3(12, 0.2340441723373718, 0.008235442720768635);
1427  ir->AddTriPoints3(15, 0.151468334609017567, 0.00427363953704605);
1428  ir->AddTriPoints3(18, 0.112733893545993667, 0.004080942928613246);
1429  ir->AddTriPoints3(21, 0.0777156920915263, 0.0030605732699918895);
1430  ir->AddTriPoints3(24, 0.034893093614297, 0.0014542491324683325);
1431  ir->AddTriPoints3(27, 0.00725818462093236667, 0.00034613762283099815);
1432  ir->AddTriPoints6(30, 0.0012923527044422, 0.227214452153364077,
1433  0.0006241445996386985);
1434  ir->AddTriPoints6(36, 0.0053997012721162, 0.435010554853571706,
1435  0.001702376454401511);
1436  ir->AddTriPoints6(42, 0.006384003033975, 0.320309599272204437,
1437  0.0016798271630320255);
1438  ir->AddTriPoints6(48, 0.00502821150199306667, 0.0917503222800051889,
1439  0.000858078269748377);
1440  ir->AddTriPoints6(54, 0.00682675862178186667, 0.0380108358587243835,
1441  0.000740428158357803);
1442  ir->AddTriPoints6(60, 0.0100161996399295333, 0.157425218485311668,
1443  0.0017556563053643425);
1444  ir->AddTriPoints6(66, 0.02575781317339, 0.239889659778533193,
1445  0.003696775074853242);
1446  ir->AddTriPoints6(72, 0.0302278981199158, 0.361943118126060531,
1447  0.003991543738688279);
1448  ir->AddTriPoints6(78, 0.0305049901071620667, 0.0835519609548285602,
1449  0.0021779813065790205);
1450  ir->AddTriPoints6(84, 0.0459565473625693333, 0.148443220732418205,
1451  0.003682528350708916);
1452  ir->AddTriPoints6(90, 0.0674428005402775333, 0.283739708727534955,
1453  0.005481786423209775);
1454  ir->AddTriPoints6(96, 0.0700450914159106, 0.406899375118787573,
1455  0.00587498087177056);
1456  ir->AddTriPoints6(102, 0.0839115246401166, 0.194113987024892542,
1457  0.005007800356899285);
1458  ir->AddTriPoints6(108, 0.120375535677152667, 0.32413434700070316,
1459  0.00665482039381434);
1460  ir->AddTriPoints6(114, 0.148066899157366667, 0.229277483555980969,
1461  0.00707722325261307);
1462  ir->AddTriPoints6(120, 0.191771865867325067, 0.325618122595983752,
1463  0.007440689780584005);
1464  TriangleIntRules[21] =
1465  TriangleIntRules[22] =
1466  TriangleIntRules[23] =
1467  TriangleIntRules[24] =
1468  TriangleIntRules[25] = ir;
1469  return ir;
1470 
1471  default:
1472  // Grundmann-Moller rules
1473  int i = (Order / 2) * 2 + 1; // Get closest odd # >= Order
1474  AllocIntRule(TriangleIntRules, i);
1475  ir = new IntegrationRule;
1476  ir->GrundmannMollerSimplexRule(i/2,2);
1477  TriangleIntRules[i-1] = TriangleIntRules[i] = ir;
1478  return ir;
1479  }
1480 }
1481 
1482 // Integration rules for unit square
1483 IntegrationRule *IntegrationRules::SquareIntegrationRule(int Order)
1484 {
1485  int RealOrder = GetSegmentRealOrder(Order);
1486  // Order is one of {RealOrder-1,RealOrder}
1487  if (!HaveIntRule(SegmentIntRules, RealOrder))
1488  {
1489  SegmentIntegrationRule(RealOrder);
1490  }
1491  AllocIntRule(SquareIntRules, RealOrder); // RealOrder >= Order
1492  SquareIntRules[RealOrder-1] =
1493  SquareIntRules[RealOrder] =
1494  new IntegrationRule(*SegmentIntRules[RealOrder],
1495  *SegmentIntRules[RealOrder]);
1496  return SquareIntRules[Order];
1497 }
1498 
1499 /** Integration rules for reference tetrahedron
1500  {[0,0,0],[1,0,0],[0,1,0],[0,0,1]} */
1501 IntegrationRule *IntegrationRules::TetrahedronIntegrationRule(int Order)
1502 {
1503  IntegrationRule *ir;
1504  // Note: Set TetrahedronIntRules[*] to ir only *after* ir is fully
1505  // constructed. This is needed in multithreaded environment.
1506 
1507  // assuming that orders <= 9 are pre-allocated
1508  switch (Order)
1509  {
1510  case 0: // 1 point - degree 1
1511  case 1:
1512  ir = new IntegrationRule(1);
1513  ir->AddTetMidPoint(0, 1./6.);
1514  TetrahedronIntRules[0] = TetrahedronIntRules[1] = ir;
1515  return ir;
1516 
1517  case 2: // 4 points - degree 2
1518  ir = new IntegrationRule(4);
1519  // ir->AddTetPoints4(0, 0.13819660112501051518, 1./24.);
1520  ir->AddTetPoints4b(0, 0.58541019662496845446, 1./24.);
1521  TetrahedronIntRules[2] = ir;
1522  return ir;
1523 
1524  case 3: // 5 points - degree 3 (negative weight)
1525  ir = new IntegrationRule(5);
1526  ir->AddTetMidPoint(0, -2./15.);
1527  ir->AddTetPoints4b(1, 0.5, 0.075);
1528  TetrahedronIntRules[3] = ir;
1529  return ir;
1530 
1531  case 4: // 11 points - degree 4 (negative weight)
1532  ir = new IntegrationRule(11);
1533  ir->AddTetPoints4(0, 1./14., 343./45000.);
1534  ir->AddTetMidPoint(4, -74./5625.);
1535  ir->AddTetPoints6(5, 0.10059642383320079500, 28./1125.);
1536  TetrahedronIntRules[4] = ir;
1537  return ir;
1538 
1539  case 5: // 14 points - degree 5
1540  ir = new IntegrationRule(14);
1541  ir->AddTetPoints6(0, 0.045503704125649649492,
1542  7.0910034628469110730E-03);
1543  ir->AddTetPoints4(6, 0.092735250310891226402, 0.012248840519393658257);
1544  ir->AddTetPoints4b(10, 0.067342242210098170608,
1545  0.018781320953002641800);
1546  TetrahedronIntRules[5] = ir;
1547  return ir;
1548 
1549  case 6: // 24 points - degree 6
1550  ir = new IntegrationRule(24);
1551  ir->AddTetPoints4(0, 0.21460287125915202929,
1552  6.6537917096945820166E-03);
1553  ir->AddTetPoints4(4, 0.040673958534611353116,
1554  1.6795351758867738247E-03);
1555  ir->AddTetPoints4b(8, 0.032986329573173468968,
1556  9.2261969239424536825E-03);
1557  ir->AddTetPoints12(12, 0.063661001875017525299, 0.26967233145831580803,
1558  8.0357142857142857143E-03);
1559  TetrahedronIntRules[6] = ir;
1560  return ir;
1561 
1562  case 7: // 31 points - degree 7 (negative weight)
1563  ir = new IntegrationRule(31);
1564  ir->AddTetPoints6(0, 0.0, 9.7001763668430335097E-04);
1565  ir->AddTetMidPoint(6, 0.018264223466108820291);
1566  ir->AddTetPoints4(7, 0.078213192330318064374, 0.010599941524413686916);
1567  ir->AddTetPoints4(11, 0.12184321666390517465,
1568  -0.062517740114331851691);
1569  ir->AddTetPoints4b(15, 2.3825066607381275412E-03,
1570  4.8914252630734993858E-03);
1571  ir->AddTetPoints12(19, 0.1, 0.2, 0.027557319223985890653);
1572  TetrahedronIntRules[7] = ir;
1573  return ir;
1574 
1575  case 8: // 43 points - degree 8 (negative weight)
1576  ir = new IntegrationRule(43);
1577  ir->AddTetPoints4(0, 5.7819505051979972532E-03,
1578  1.6983410909288737984E-04);
1579  ir->AddTetPoints4(4, 0.082103588310546723091,
1580  1.9670333131339009876E-03);
1581  ir->AddTetPoints12(8, 0.036607749553197423679, 0.19048604193463345570,
1582  2.1405191411620925965E-03);
1583  ir->AddTetPoints6(20, 0.050532740018894224426,
1584  4.5796838244672818007E-03);
1585  ir->AddTetPoints12(26, 0.22906653611681113960, 0.035639582788534043717,
1586  5.7044858086819185068E-03);
1587  ir->AddTetPoints4(38, 0.20682993161067320408, 0.014250305822866901248);
1588  ir->AddTetMidPoint(42, -0.020500188658639915841);
1589  TetrahedronIntRules[8] = ir;
1590  return ir;
1591 
1592  case 9: // orders 9 and higher -- Grundmann-Moller rules
1593  ir = new IntegrationRule;
1594  ir->GrundmannMollerSimplexRule(4,3);
1595  TetrahedronIntRules[9] = ir;
1596  return ir;
1597 
1598  default: // Grundmann-Moller rules
1599  int i = (Order / 2) * 2 + 1; // Get closest odd # >= Order
1600  AllocIntRule(TetrahedronIntRules, i);
1601  ir = new IntegrationRule;
1602  ir->GrundmannMollerSimplexRule(i/2,3);
1603  TetrahedronIntRules[i-1] = TetrahedronIntRules[i] = ir;
1604  return ir;
1605  }
1606 }
1607 
1608 // Integration rules for reference prism
1609 IntegrationRule *IntegrationRules::PrismIntegrationRule(int Order)
1610 {
1611  const IntegrationRule & irt = Get(Geometry::TRIANGLE, Order);
1612  const IntegrationRule & irs = Get(Geometry::SEGMENT, Order);
1613  int nt = irt.GetNPoints();
1614  int ns = irs.GetNPoints();
1615  AllocIntRule(PrismIntRules, Order);
1616  PrismIntRules[Order] = new IntegrationRule(nt * ns);
1617 
1618  for (int ks=0; ks<ns; ks++)
1619  {
1620  const IntegrationPoint & ips = irs.IntPoint(ks);
1621  for (int kt=0; kt<nt; kt++)
1622  {
1623  int kp = ks * nt + kt;
1624  const IntegrationPoint & ipt = irt.IntPoint(kt);
1625  IntegrationPoint & ipp = PrismIntRules[Order]->IntPoint(kp);
1626  ipp.x = ipt.x;
1627  ipp.y = ipt.y;
1628  ipp.z = ips.x;
1629  ipp.weight = ipt.weight * ips.weight;
1630  }
1631  }
1632  return PrismIntRules[Order];
1633 }
1634 
1635 // Integration rules for reference cube
1636 IntegrationRule *IntegrationRules::CubeIntegrationRule(int Order)
1637 {
1638  int RealOrder = GetSegmentRealOrder(Order);
1639  if (!HaveIntRule(SegmentIntRules, RealOrder))
1640  {
1641  SegmentIntegrationRule(RealOrder);
1642  }
1643  AllocIntRule(CubeIntRules, RealOrder);
1644  CubeIntRules[RealOrder-1] =
1645  CubeIntRules[RealOrder] =
1646  new IntegrationRule(*SegmentIntRules[RealOrder],
1647  *SegmentIntRules[RealOrder],
1648  *SegmentIntRules[RealOrder]);
1649  return CubeIntRules[Order];
1650 }
1651 
1652 }
int GetNPoints() const
Returns the number of the points in the integration rule.
Definition: intrules.hpp:237
int Size() const
Logical size of the array.
Definition: array.hpp:118
Class for an integration rule - an Array of IntegrationPoint.
Definition: intrules.hpp:85
const IntegrationRule & Get(int GeomType, int Order)
Returns an integration rule for given GeomType and Order.
Definition: intrules.cpp:877
void ClosedUniform(const int np, IntegrationRule *ir)
Definition: intrules.cpp:578
~IntegrationRules()
Destroys an IntegrationRules object.
Definition: intrules.cpp:968
aka closed Newton-Cotes
Definition: intrules.hpp:287
Container class for integration rules.
Definition: intrules.hpp:299
void OpenUniform(const int np, IntegrationRule *ir)
Definition: intrules.cpp:564
aka open Newton-Cotes
Definition: intrules.hpp:286
void GaussLobatto(const int np, IntegrationRule *ir)
Definition: intrules.cpp:442
IntegrationPoint & IntPoint(int i)
Returns a reference to the i-th integration point.
Definition: intrules.hpp:240
void mfem_error(const char *msg)
Function called when an error is encountered. Used by the macros MFEM_ABORT, MFEM_ASSERT, MFEM_VERIFY.
Definition: error.cpp:146
void OpenHalfUniform(const int np, IntegrationRule *ir)
Definition: intrules.cpp:596
void SetSize(int nsize)
Change logical size of the array, keep existing entries.
Definition: array.hpp:618
void SetOrder(const int order)
Sets the order of the integration rule. This is only for keeping order information, it does not alter any data in the IntegrationRule.
Definition: intrules.hpp:234
Class for integration point with weight.
Definition: intrules.hpp:25
aka &quot;open half&quot; Newton-Cotes
Definition: intrules.hpp:288
Vector data type.
Definition: vector.hpp:48
IntegrationRules RefinedIntRules(1, Quadrature1D::GaussLegendre)
A global object with all refined integration rules.
Definition: intrules.hpp:371
void pts(int iphi, int t, double x[])
void Set(int GeomType, int Order, IntegrationRule &IntRule)
Definition: intrules.cpp:923
IntegrationRules IntRules(0, Quadrature1D::GaussLegendre)
A global object with all integration rules (defined in intrules.cpp)
Definition: intrules.hpp:368
void Set1w(const double x1, const double w)
Definition: intrules.hpp:79
void GaussLegendre(const int np, IntegrationRule *ir)
Definition: intrules.cpp:363