15 #include "../config/config.hpp"
16 #include "../general/globals.hpp"
37 void FNorm(
double &scale_factor,
double &scaled_fnorm2)
const;
67 { data = d;
height = h;
width = w; capacity = -h*w; }
73 void Reset(
double *d,
int h,
int w)
94 inline double *
Data()
const {
return data; }
96 inline double *
GetData()
const {
return data; }
98 inline bool OwnsData()
const {
return (capacity > 0); }
104 inline const double &
operator()(
int i,
int j)
const;
110 double Trace()
const;
113 virtual double &
Elem(
int i,
int j);
116 virtual const double &
Elem(
int i,
int j)
const;
119 void Mult(
const double *x,
double *y)
const;
143 double InnerProduct(
const double *x,
const double *y)
const;
160 {
return InnerProduct((
const double *)x, (
const double *)y); }
179 void Set(
double alpha,
const double *A);
210 void Norm2(
double *v)
const;
216 double FNorm()
const {
double s, n2;
FNorm(s, n2);
return s*sqrt(n2); }
219 double FNorm2()
const {
double s, n2;
FNorm(s, n2);
return s*s*n2; }
227 { Eigensystem(ev, &evect); }
231 { Eigensystem(ev, &evect); }
236 { Eigensystem(b, ev); }
240 { Eigensystem(b, ev, &evect); }
245 { Eigensystem(b, ev, &evect); }
248 int Rank(
double tol)
const;
269 void SetRow(
int row,
double value);
271 void SetCol(
int col,
double value);
281 void Diag(
double c,
int n);
283 void Diag(
double *diag,
int n);
318 int row_offset,
int col_offset);
320 void CopyMNDiag(
double c,
int n,
int row_offset,
int col_offset);
322 void CopyMNDiag(
double *diag,
int n,
int row_offset,
int col_offset);
355 long MemoryUsage()
const {
return std::abs(capacity) *
sizeof(double); }
362 void Add(
const DenseMatrix &A,
const DenseMatrix &B,
363 double alpha, DenseMatrix &C);
366 void Add(
double alpha,
const double *A,
367 double beta,
const double *B, DenseMatrix &C);
370 void Add(
double alpha,
const DenseMatrix &A,
371 double beta,
const DenseMatrix &B, DenseMatrix &C);
374 void Mult(
const DenseMatrix &b,
const DenseMatrix &c, DenseMatrix &a);
377 void AddMult(
const DenseMatrix &b,
const DenseMatrix &c, DenseMatrix &a);
382 void CalcAdjugate(
const DenseMatrix &a, DenseMatrix &adja);
389 void CalcInverse(
const DenseMatrix &a, DenseMatrix &inva);
397 void CalcOrtho(
const DenseMatrix &J, Vector &n);
400 void MultAAt(
const DenseMatrix &a, DenseMatrix &aat);
403 void MultADAt(
const DenseMatrix &A,
const Vector &D, DenseMatrix &ADAt);
406 void AddMultADAt(
const DenseMatrix &A,
const Vector &D, DenseMatrix &ADAt);
409 void MultABt(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &ABt);
412 void MultADBt(
const DenseMatrix &A,
const Vector &D,
413 const DenseMatrix &B, DenseMatrix &ADBt);
416 void AddMultABt(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &ABt);
419 void AddMultADBt(
const DenseMatrix &A,
const Vector &D,
420 const DenseMatrix &B, DenseMatrix &ADBt);
423 void AddMult_a_ABt(
double a,
const DenseMatrix &A,
const DenseMatrix &B,
427 void MultAtB(
const DenseMatrix &A,
const DenseMatrix &B, DenseMatrix &AtB);
430 void AddMult_a_AAt(
double a,
const DenseMatrix &A, DenseMatrix &AAt);
433 void Mult_a_AAt(
double a,
const DenseMatrix &A, DenseMatrix &AAt);
436 void MultVVt(
const Vector &v, DenseMatrix &vvt);
438 void MultVWt(
const Vector &v,
const Vector &w, DenseMatrix &VWt);
441 void AddMultVWt(
const Vector &v,
const Vector &w, DenseMatrix &VWt);
444 void AddMultVVt(
const Vector &v, DenseMatrix &VWt);
447 void AddMult_a_VWt(
const double a,
const Vector &v,
const Vector &w,
451 void AddMult_a_VVt(
const double a,
const Vector &v, DenseMatrix &VVt);
461 #ifdef MFEM_USE_LAPACK
480 double Det(
int m)
const;
484 void Mult(
int m,
int n,
double *X)
const;
488 void LSolve(
int m,
int n,
double *X)
const;
492 void USolve(
int m,
int n,
double *X)
const;
496 void Solve(
int m,
int n,
double *X)
const;
503 static void SubMult(
int m,
int n,
int r,
const double *A21,
504 const double *X1,
double *X2);
516 void BlockFactor(
int m,
int n,
double *A12,
double *A21,
double *A22)
const;
534 double *B1,
double *B2)
const;
543 const double *X2,
double *Y1)
const;
608 #ifdef MFEM_USE_LAPACK
636 #ifdef MFEM_USE_LAPACK
679 : Mk(NULL, other.Mk.height, other.Mk.width), nk(other.nk)
705 tdata.
New(i*j*k, mt);
713 tdata.
Wrap(ext_data, i*j*k,
false);
730 double *
Data() {
return tdata; }
732 const double *
Data()
const {
return tdata; }
754 MFEM_ASSERT(data && i >= 0 && i < height && j >= 0 && j <
width,
"");
760 MFEM_ASSERT(data && i >= 0 && i < height && j >= 0 && j <
width,
"");
int Size() const
For backward compatibility define Size to be synonym of Width()
void Symmetrize()
(*this) = 1/2 ((*this) + (*this)^t)
void MultABt(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
Multiply a matrix A with the transpose of a matrix B: A*Bt.
DenseMatrix & operator-=(const DenseMatrix &m)
void SymmetricScaling(const Vector &s)
SymmetricScaling this = diag(sqrt(s)) * this * diag(sqrt(s))
void SquareRootInverse()
Replaces the current matrix with its square root inverse.
int CheckFinite(const double *v, const int n)
void AddMultVWt(const Vector &v, const Vector &w, DenseMatrix &VWt)
VWt += v w^t.
void Mult(DenseMatrix &X) const
Multiply the inverse matrix by another matrix: X <- A^{-1} X.
DenseMatrix & operator*=(double c)
void GetDiag(Vector &d) const
Returns the diagonal of the matrix.
void UseExternalData(double *ext_data, int i, int j, int k)
DenseTensor & operator=(double c)
Sets the tensor elements equal to constant c.
void MultVWt(const Vector &v, const Vector &w, DenseMatrix &VWt)
void InvRightScaling(const Vector &s)
InvRightScaling: this = this * diag(1./s);.
const DenseMatrix & operator()(int k) const
void Eigenvalues(Vector &ev)
Compute eigenvalues of A x = ev x where A = *this.
void SingularValues(Vector &sv) const
void Delete()
Delete the owned pointers. The Memory is not reset by this method.
DenseMatrix & operator()(int k)
void Eigensystem(DenseMatrix &b, Vector &ev, DenseMatrix &evect)
void Mult(const Table &A, const Table &B, Table &C)
C = A * B (as boolean matrices)
int Width() const
Get the width (size of input) of the Operator. Synonym with NumCols().
void BlockFactor(int m, int n, double *A12, double *A21, double *A22) const
void BlockBackSolve(int m, int n, int r, const double *U12, const double *X2, double *Y1) const
double InnerProduct(const double *x, const double *y) const
Compute y^t A x.
void CalcAdjugate(const DenseMatrix &a, DenseMatrix &adja)
void AddMult(const Table &elem_dof, const Vector &x, Vector &y) const
void TestInversion()
Invert and print the numerical conditioning of the inversion.
Data type dense matrix using column-major storage.
void CopyRows(const DenseMatrix &A, int row1, int row2)
Copy rows row1 through row2 from A to *this.
void SetSize(int i, int j, int k)
void Eval(DenseMatrix &M)
const double * Data() const
Abstract data type for matrix inverse.
void AddMult_a_ABt(double a, const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
ABt += a * A * B^t.
void GetInverseMatrix(DenseMatrix &Ainv) const
Compute and return the inverse matrix in Ainv.
void Factor()
Factor the current DenseMatrix, *a.
void CopyFrom(const Memory &src, int size)
Copy size entries from src to *this.
void GetInverseMatrix(int m, double *X) const
Assuming L.U = P.A factored data of size (m x m), compute X <- A^{-1}.
double * GetData() const
Returns the matrix data array.
const Memory< double > & GetMemory() const
void CalcOrtho(const DenseMatrix &J, Vector &n)
DenseMatrix & operator=(double c)
Sets the matrix elements equal to constant c.
void Set(double alpha, const double *A)
Set the matrix to alpha * A, assuming that A has the same dimensions as the matrix and uses column-ma...
void Mult_a_AAt(double a, const DenseMatrix &A, DenseMatrix &AAt)
AAt = a * A * A^t.
MemoryType GetMemoryType() const
Return a MemoryType that is currently valid. If both the host and the device pointers are currently v...
static void SubMult(int m, int n, int r, const double *A21, const double *X1, double *X2)
const Vector & Eigenvector(int i)
virtual void Print(std::ostream &out=mfem::out, int width_=4) const
Prints matrix to stream out.
virtual void Mult(const Vector &x, Vector &y) const
Matrix vector multiplication with the inverse of dense matrix.
const double & operator()(int i, int j, int k) const
void Set(double alpha, const DenseMatrix &A)
Set the matrix to alpha * A.
void Add(const DenseMatrix &A, const DenseMatrix &B, double alpha, DenseMatrix &C)
C = A + alpha*B.
double & operator()(int i, int j)
Returns reference to a_{ij}.
void Wrap(T *ptr, int size, bool own)
Wrap an externally allocated host pointer, ptr with type MemoryType::HOST.
void USolve(int m, int n, double *X) const
double FNorm() const
Compute the Frobenius norm of the matrix.
void MultTranspose(const double *x, double *y) const
Multiply a vector with the transpose matrix.
void CalcAdjugateTranspose(const DenseMatrix &a, DenseMatrix &adjat)
Calculate the transposed adjugate of a matrix (for NxN matrices, N=1,2,3)
double & operator()(int i, int j, int k)
void AddMult(const DenseMatrix &b, const DenseMatrix &c, DenseMatrix &a)
Matrix matrix multiplication. A += B * C.
double operator*(const DenseMatrix &m) const
Matrix inner product: tr(A^t B)
double Singularvalue(int i)
void Reset(double *d, int h, int w)
Change the data array and the size of the DenseMatrix.
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
void Add(const double c, const DenseMatrix &A)
Adds the matrix A multiplied by the number c to the matrix.
void AddMult_a_VWt(const double a, const Vector &v, const Vector &w, DenseMatrix &VWt)
VWt += a * v w^t.
void InvSymmetricScaling(const Vector &s)
InvSymmetricScaling this = diag(sqrt(1./s)) * this * diag(sqrt(1./s))
void GetRow(int r, Vector &row) const
void BlockForwSolve(int m, int n, int r, const double *L21, double *B1, double *B2) const
DenseMatrixSVD(DenseMatrix &M)
Abstract data type matrix.
const double * GetColumn(int col) const
void Norm2(double *v) const
Take the 2-norm of the columns of A and store in v.
void MultADBt(const DenseMatrix &A, const Vector &D, const DenseMatrix &B, DenseMatrix &ADBt)
ADBt = A D B^t, where D is diagonal.
void Invert()
Replaces the current matrix with its inverse.
virtual ~DenseMatrixInverse()
Destroys dense inverse matrix.
void LSolve(int m, int n, double *X) const
void LeftScaling(const Vector &s)
LeftScaling this = diag(s) * this.
double Det() const
Compute the determinant of the original DenseMatrix using the LU factors.
void AddMultVVt(const Vector &v, DenseMatrix &VVt)
VVt += v v^t.
void CopyMNDiag(double c, int n, int row_offset, int col_offset)
Copy c on the diagonal of size n to *this at row_offset, col_offset.
~DenseMatrixEigensystem()
void AddMult_a_VVt(const double a, const Vector &v, DenseMatrix &VVt)
VVt += a * v v^t.
void Neg()
(*this) = -(*this)
virtual void SetOperator(const Operator &op)
Set/update the solver for the given operator.
void Solve(int m, int n, double *X) const
void SetRow(int r, const Vector &row)
void Getl1Diag(Vector &l) const
Returns the l1 norm of the rows of the matrix v_i = sum_j |a_ij|.
void AddToVector(int offset, Vector &v) const
Add the matrix 'data' to the Vector 'v' at the given 'offset'.
DenseMatrix & Eigenvectors()
void Reset()
Reset the memory to be empty, ensuring that Delete() will be a no-op.
void GetColumn(int c, Vector &col) const
void AddMult(const Vector &x, Vector &y) const
y += A.x
void Threshold(double eps)
Replace small entries, abs(a_ij) <= eps, with zero.
void CalcInverse(const DenseMatrix &a, DenseMatrix &inva)
void TestInversion()
Print the numerical conditioning of the inversion: ||A^{-1} A - I||.
double MaxMaxNorm() const
Compute the norm ||A|| = max_{ij} |A_{ij}|.
double * Data() const
Returns the matrix data array.
void Transpose()
(*this) = (*this)^t
void MultVVt(const Vector &v, DenseMatrix &vvt)
Make a matrix from a vector V.Vt.
double Trace() const
Trace of a square matrix.
void AddMultABt(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &ABt)
ABt += A * B^t.
MemoryType
Memory types supported by MFEM.
DenseTensor(int i, int j, int k)
void MultAAt(const DenseMatrix &a, DenseMatrix &aat)
Calculate the matrix A.At.
void GetColumnReference(int c, Vector &col)
void AddMatrix(DenseMatrix &A, int ro, int co)
Perform (ro+i,co+j)+=A(i,j) for 0<=i<A.Height, 0<=j<A.Width.
DenseMatrix(double *d, int h, int w)
Construct a DenseMatrix using an existing data array.
void Clear()
Delete the matrix data array (if owned) and reset the matrix state.
void CalcInverseTranspose(const DenseMatrix &a, DenseMatrix &inva)
Calculate the inverse transpose of a matrix (for NxN matrices, N=1,2,3)
A class to initialize the size of a Tensor.
void SetDataAndSize(double *d, int s)
Set the Vector data and size.
void MultADAt(const DenseMatrix &A, const Vector &D, DenseMatrix &ADAt)
ADAt = A D A^t, where D is diagonal.
void Eigenvalues(DenseMatrix &b, Vector &ev)
int height
Dimension of the output / number of rows in the matrix.
virtual void PrintT(std::ostream &out=mfem::out, int width_=4) const
Prints the transpose matrix to stream out.
void CopyCols(const DenseMatrix &A, int col1, int col2)
Copy columns col1 through col2 from A to *this.
virtual MatrixInverse * Inverse() const
Returns a pointer to the inverse matrix.
double * GetColumn(int col)
void AddMultADBt(const DenseMatrix &A, const Vector &D, const DenseMatrix &B, DenseMatrix &ADBt)
ADBt = A D B^t, where D is diagonal.
virtual ~DenseMatrix()
Destroys dense matrix.
void CopyMNt(const DenseMatrix &A, int row_offset, int col_offset)
Copy matrix A^t to the location in *this at row_offset, col_offset.
void AddMultTranspose(const Vector &x, Vector &y) const
y += A^t x
void CopyExceptMN(const DenseMatrix &A, int m, int n)
Copy All rows and columns except m and n from A.
void New(int size)
Allocate host memory for size entries with type MemoryType::HOST.
void Diag(double c, int n)
Creates n x n diagonal matrix with diagonal elements c.
void Mult(int m, int n, double *X) const
static const int ipiv_base
void GradToCurl(DenseMatrix &curl)
DenseMatrixInverse()
Default constructor.
double CalcSingularvalue(const int i) const
Return the i-th singular value (decreasing order) of NxN matrix, N=1,2,3.
void GetRowSums(Vector &l) const
Compute the row sums of the DenseMatrix.
void CalcEigenvalues(double *lambda, double *vec) const
void Eigenvalues(Vector &ev, DenseMatrix &evect)
Compute eigenvalues and eigenvectors of A x = ev x where A = *this.
DenseMatrixEigensystem(DenseMatrix &m)
int Rank(double tol) const
LUFactors(double *data_, int *ipiv_)
void AddMult_a(double a, const Vector &x, Vector &y) const
y += a * A.x
void RightScaling(const Vector &s)
RightScaling: this = this * diag(s);.
DenseTensor(const DenseTensor &other)
Copy constructor: deep copy.
void MultAtB(const DenseMatrix &A, const DenseMatrix &B, DenseMatrix &AtB)
Multiply the transpose of a matrix A with a matrix B: At*B.
void Mult(const double *x, double *y) const
Matrix vector multiplication.
void AddMultTranspose_a(double a, const Vector &x, Vector &y) const
y += a * A^t x
void AddMultADAt(const DenseMatrix &A, const Vector &D, DenseMatrix &ADAt)
ADAt += A D A^t, where D is diagonal.
void GetFromVector(int offset, const Vector &v)
Get the matrix 'data' from the Vector 'v' at the given 'offset'.
Memory< double > & GetMemory()
void CopyMN(const DenseMatrix &A, int m, int n, int Aro, int Aco)
Copy the m x n submatrix of A at row/col offsets Aro/Aco to *this.
void InvLeftScaling(const Vector &s)
InvLeftScaling this = diag(1./s) * this.
void UseExternalData(double *d, int h, int w)
Change the data array and the size of the DenseMatrix.
void SetCol(int c, const Vector &col)
void Eigensystem(Vector &ev, DenseMatrix &evect)
Compute eigenvalues and eigenvectors of A x = ev x where A = *this.
void SetSize(int s)
Change the size of the DenseMatrix to s x s.
OutStream out(std::cout)
Global stream used by the library for standard output. Initially it uses the same std::streambuf as s...
int Size() const
Get the size of the inverse matrix.
Vector & Singularvalues()
Rank 3 tensor (array of matrices)
double InnerProduct(const Vector &x, const Vector &y) const
Compute y^t A x.
double FNorm2() const
Compute the square of the Frobenius norm of the matrix.
virtual double & Elem(int i, int j)
Returns reference to a_{ij}.
void AdjustDofDirection(Array< int > &dofs)
void GradToDiv(Vector &div)
void AddMult_a_AAt(double a, const DenseMatrix &A, DenseMatrix &AAt)
AAt += a * A * A^t.
int width
Dimension of the input / number of columns in the matrix.
void Eigenvalues(DenseMatrix &b, Vector &ev, DenseMatrix &evect)
Compute generalized eigenvalues of A x = ev B x, where A = *this.
virtual void PrintMatlab(std::ostream &out=mfem::out) const
DenseMatrix & operator+=(const double *m)